Anzeige


Home | Formen | Glossar | Impressum & Datenschutz Geometrierechner English: Geometric Calculators

2D Regelmäßige Polygone:
Gleichseitiges Dreieck, Quadrat, Fünfeck, Sechseck, Siebeneck, Achteck, Neuneck, Zehneck, Elfeck, Zwölfeck, Vieleck

Andere Polygone:
Dreieck, Rechtwinkliges Dreieck, Gleichschenkliges Dreieck, GR Dreieck, Viereck, Rechteck, Raute, Parallelogramm, Drachenviereck, Rechtwinkliges Trapez, Gleichschenkliges Trapez, Trapez, Sehnenviereck, Tangentenviereck, Pfeilviereck, Antiparallelogramm, Hausform, Konkaves Fünfeck, Parallelogon, Dreistern, Vierstern, Pentagramm, Hexagramm, Stern von Lakshmi

Runde Formen:
Kreis, Halbkreis, Kreissektor, Kreissegment, Runde Ecke, Kreisring, Kreisringsektor, Ellipse, Stadion, Zweieck, Kugeldreieck, Reuleaux-Dreieck, Zykloide, Astroide, Hypozykloide, Kardioide, Parabelsegment, Arbelos, Salinon, Möndchen, Oval, Drei Kreise, Lemniskate, Superkreis
3D Platonische Körper:
Tetraeder, Würfel, Oktaeder, Dodekaeder, Ikosaeder

Archimedische Körper:
Tetraederstumpf, Kuboktaeder, Hexaederstumpf, Oktaederstumpf, Rhombenkuboktaeder, Ikosidodekaeder, Dodekaederstumpf, Ikosaederstumpf

Catalanische Körper:
Triakistetraeder, Rhombendodekaeder, Tetrakishexaeder, Deltoidalikositetraeder, Rhombentriakontaeder

Johnson-Körper:
Pyramiden, Kuppeln, Rotunde, Verlängerte Pyramiden, Trigondodekaeder

Andere Polyeder:
Quader, Quadratische Säule, Quadratische Pyramide, Regelmäßige Pyramide, Pyramide, Reg. Pyramidenstumpf, Pyramidenstumpf, Doppelpyramide, Rampe, Gerader Keil, Keil, Rhomboeder, Parallelepiped, Prisma, Schiefes Prisma, Antiprisma, Trapezoeder, Disphenoid, Ecke, Allgemeiner Tetraeder, Rhomboederstumpf, Sterntetraeder, Dodekaederstern, Ikosaederstern

Runde Formen:
Kugel, Halbkugel, Zylinder, Zylinderabschnitt, Schräger Zylinder, Allgemeiner Zylinder, Kegel, Kegelstumpf, Schiefer Kreiskegel, Ellipsenkegel, Sphäroid, Ellipsoid, Kugelsektor, Kugelsegment, Kugelschicht, Kugelkeil, Zylinderkeil, Zylindersektor, Zylindersegment, Kugelschale, Hohlzylinder, Kugelring, Torus, Reuleaux-Tetraeder, Kapsel, Linse, Fass, Paraboloid, Hyperboloid, Oloid, Steinmetzkörper


Anzeige


Rechtwinkliges Dreieck-Rechner

Berechnungen in einem rechtwinkligen Dreieck. Geben Sie bei a, b und c zwei Werte ein, runden Sie bei Bedarf und klicken Sie auf Berechnen. Die Ausgabe der Winkel erfolgt in Grad, hier kann man Winkel umrechnen.


Pythagoras Gegenkathete zu α (a): Rechtwinkliges Dreieck
Form: diagonal halbiertes Rechteck
Ankathete zu α (b):
Hypotenuse (c):
Höhe (h):
Umfang (u):
Flächeninhalt (A):
Hypotenusenabschnitt über a (p):
Hypotenusenabschnitt über b (q):
Winkel bei Punkt A (α):
Winkel bei Punkt B (β):
Umkreisradius (rU):
Inkreisradius (rI):
Seitenhalbierende a (sa):
Seitenhalbierende b (sb):
Seitenhalbierende c (sc):
Runden auf    Nachkommastellen.



Formeln:
a² + b² = c² (Satz des Pythagoras)
p = ( a² ) / c
q = ( b² ) / c
h = √( p * q )
u = a + b + c
A = ( a * b ) / 2
α = arccos( (b² + c² - a²) / (2bc) )
β = arccos( (a² + c² - b²) / (2ac) )
γ = π/2 = 90°
rU = c / 2
rI = ( a + b - c ) / 2
sa = √2 * ( b² + c² ) - a² / 2
sb = √2 * ( c² + a² ) - b² / 2
sc = √2 * ( a² + b² ) - c² / 2

Katheten, Hypotenuse, Seitenhalbierende, Höhen, Umfang und Radius haben die gleiche Einheit (beispielsweise Meter), der Flächeninhalt hat diese Einheit zum Quadrat (beispielsweise Quadratmeter).

Anzeige

Die Höhen der Katheten sind identisch mit der jeweils anderen Kathete. Der Schnittpunkt der Seitenhalbierenden ist der Schwerpunkt des rechtwinkligen Dreiecks. Der Schnittpunkt der Winkelhalbierenden ist der Mittelpunkt des Inkreises. Der Mittelpunkt des Umkreises ist der Schnittpunkt der Mittelsenkrechten der Katheten und die Mitte der Hypotenuse.

Rechtwinkliges Dreieck, Umfang und Flächeninhalt
Umfang u, Flächeninhalt A
Rechtwinkliges Dreieck, Katheten und Hypotenuse
Katheten und Hypotenuse

Rechtwinkliges Dreieck, Höhen
Höhen
Rechtwinkliges Dreieck, Hypotenusenabschnitte
Hypotenusenabschnitte p und q

Rechtwinkliges Dreieck, Seitenhalbierende und Schwerpunkt
Seitenhalbierende und Schwerpunkt
Rechtwinkliges Dreieck, Winkelhalbierende und Inkreis
Winkelhalbierende und Inkreis

Rechtwinkliges Dreieck, Mittelsenkrechte und Umkreis
Mittelsenkrechte und Umkreis




Anzeige


Teilen:    


Glossar | Alle Angaben ohne Gewähr | © Jumk.de Webprojekte | Rechneronline




Anzeige

↑ hoch