Geometrie | Formen | Glossar | Impressum & Datenschutz Geometrierechner English: Geometric Calculators, Forms

1D Gerade, Kreisbogen, Parabel, Helix, Koch-Kurve
2D Regelmäßige Polygone:
Gleichseitiges Dreieck, Quadrat, Fünfeck, Sechseck, Siebeneck, Achteck, Neuneck, Zehneck, Elfeck, Zwölfeck, Sechzehneck, Vieleck, Vieleckring

Andere Polygone:
Dreieck, Rechtwinkliges Dreieck, Gleichschenkliges Dreieck, GR Dreieck, 1/2 GS Dreieck, Viereck, Rechteck, Goldenes Rechteck, Raute, Parallelogramm, Drachenviereck, 60-90-120-Deltoid, Halbquadrat-Deltoid, Rechtwinkliges Deltoid, Trapez, Rechtwinkliges Trapez, Gleichschenkliges Trapez, Dreigleichseitiges Trapez, Stumpfes Trapez, Sehnenviereck, Tangentenviereck, Pfeilviereck, Konkaves Viereck, Überschlagenes Rechteck, Antiparallelogramm, Hausform, Symmetrisches Fünfeck, Diagonal halbiertes Achteck, Abgeschnittenes Rechteck, Konkaves Fünfeck, Konkaves regelmäßiges Fünfeck, Verlängertes Fünfeck, Gerade halbiertes Achteck, Verlängertes Sechseck, Symmetrisches Sechseck, Halbregelmäßiges Sechseck, Parallelogon, Konkaves Sechseck, Pfeilsechseck, Rechteckiges Sechseck, L-Form, Knick, T-Form, Quadrat-Siebeneck, Abgestumpftes Quadrat, Verlängertes Achteck, Rahmen, Offener Rahmen, Gitter, Kreuz, X-Form, H-Form, Dreistern, Vierstern, Pentagramm, Hexagramm, Unikursales Hexagramm, Oktagramm, Stern von Lakshmi, Doppelter Stern, Vielzackiger Stern, The Hat, Polygon

Runde Formen:
Kreis, Halbkreis, Kreissektor, Kreissegment, Kreisschicht, Kreismittelsegment, Runde Ecke, Kreisecke, Kreistangentenpfeil, Tropfenform, Sichel, Spitzes Oval, Zwei Kreise, Spitzbogen, Kreisring, Halbkreisring, Kreisringsektor, Kreisringsegment, Käsch, Gekrümmtes Rechteck, Abgerundetes Vieleck, Abgerundetes Rechteck, Ellipse, Halbellipse, Ellipsensegment, Ellipsensektor Elliptischer Ring, Stadion, Spirale, Log. Spirale, Reuleaux-Dreieck, Zykloide, Doppelzykloide, Astroide, Hypozykloide, Kardioide, Epizykloide, Parabelsegment, Herz, Dreispitz, Halbkreisspitz, Kuppe, Zwischenbogendreieck, Kreisbogendreieck, Zwischenbogenviereck, Zwischenkreisviereck, Kreisbogenviereck, Kreisbogenvieleck, Kralle, Yin-Yang-Hälfte, Arbelos, Salinon, Beule, Möndchen, Drei Kreise, Vielkreis, Rundseitiges Vieleck, Rosette, Zahnrad, Oval, Ei-Umriss, Lemniskate, Superkreis, Kreisquadrat, Zweieck, Kugeldreieck
3D Platonische Körper:
Tetraeder, Würfel, Oktaeder, Dodekaeder, Ikosaeder

Archimedische Körper:
Tetraederstumpf, Kuboktaeder, Hexaederstumpf, Oktaederstumpf, Rhombenkuboktaeder, Kuboktaederstumpf, Ikosidodekaeder, Dodekaederstumpf, Ikosaederstumpf, Abgeschrägtes Hexaeder, Rhombenikosidodekaeder, Ikosidodekaederstumpf, Abgeschrägtes Dodekaeder

Catalanische Körper:
Triakistetraeder, Rhombendodekaeder, Triakisoktaeder, Tetrakishexaeder, Deltoidalikositetraeder, Hexakisoktaeder, Rhombentriakontaeder, Triakisikosaeder, Pentakisdodekaeder, Pentagonikositetraeder, Deltoidalhexakontaeder, Hexakisikosaeder, Pentagonhexakontaeder

Johnson-Körper:
Pyramiden, Kuppeln, Rotunde, Verlängerte Pyramiden, Verdreht verlängerte Pyramiden, Bipyramiden, Verlängerte Bipyramiden, Verdreht verl. Quadratbipyramide, Verdrehter Doppelkeil, Disheptaeder, Trigondodekaeder, Sphenocorona, Disphenocingulum

Andere Polyeder:
Quader, Quadratische Säule, Dreieckspyramide, Quadratische Pyramide, Regelmäßige Pyramide, Pyramide, Quadr. Pyramidenstumpf, Reg. Pyramidenstumpf, Pyramidenstumpf, Knickpyramide, Regelmäßige Doppelpyramide, Doppelpyramide, Bifrustum, Frustum-Pyramide, Rampe, Gerader Keil, Keil, Halbes Tetraeder, Rhomboeder, Parallelepiped, Regelmäßiges Prisma, Prisma, Schiefes Prisma, Antiwürfel, Antiprisma, Prismatoid, Trapezoeder, Disphenoid, Ecke, Allgemeiner Tetraeder, Keilquader, Halber Quader, Abgeschrägter Quader, Barren, Abgeschrägtes Dreikantprisma, Abgeschnittener Quader, Abgestumpfter Quader, Stumpfkantiger Quader, Verlängertes Rhombendodekaeder, Rhomboederstumpf, Obelisk, Geknickter Quader, Hohlquader, Hohlpyramide, Hohlfrustum, Sternpyramide, Sterntetraeder, Dodekaederstern, Ikosaederstern, Großes Dodekaeder, Großes Ikosaeder

Runde Formen:
Kugel, Halbkugel, Kugelecke, Zylinder, Zylinderabschnitt, Schräger Zylinder, Geknickter Zylinder, Elliptischer Zylinder, Allgemeiner Zylinder, Kegel, Kegelstumpf, Schiefer Kreiskegel, Ellipsenkegel, Elliptischer Kegelstumpf, Allgemeiner Kegel, Allgemeiner Kegelstumpf, Doppelkegel, Doppelkegelstumpf, Spitze Säule, Abgerundeter Kegel, Tropfen, Sphäroid, Ellipsoid, Halbellipsoid, Kugelsektor, Kugelsegment, Kugelschicht, Kugelmittelsegment, Doppelkalotte, Doppelkugel, Kugelkeil, Halbzylinder, Diagonal halbierter Zylinder, Zylinderkeil, Zylindersektor, Zylindersegment, Abgeschrägter Zylinder, Halbkegel, Kegelsektor, Kegelkeil, Kugelschale, Halbkugelschale, Kugelschalensegment, Hohlzylinder, Hohlzylinderabschnitt, Schräger Hohlzylinder, Hohlkegel, Hohlkegelstumpf, Kugelring, Torus, Spindeltorus, Toroid, Torussektor, Toroidsektor, Bogen, Reuleaux-Tetraeder, Kapsel, Kapselsegment, Doppelspitz, Antikegel, Antikegelstumpf, Kugelzylinder, Linse, Konkave Linse, Fass, Ei-Form, Paraboloid, Hyperboloid, Oloid, Steinmetzkörper, Rotationskörper
4D Tesserakt, Hypersphäre


Anzeige


Torus - Rechner

Berechnungen bei einem Torus. R ist der Abstand vom Zentrum der Röhre zum Zentrum des Torus, r ist der Radius der Röhre. Mit R>r ist es ein Ringtorus. Ein Ringtorus ist ein Toroid mit einem Kreis als Basis. Mit R=r handelt es sich um einen Horntorus, bei dem die Innenseite der Röhre das Zentrum des Torus schließt. Diese Berechnung gilt für Ringtorus und Horntorus. Bei R<r liegt ein Spindeltorus vor.
Geben Sie beide Radien ein, runden Sie bei Bedarf und klicken Sie auf Berechnen.


Euklid Großer Radius (R): Torus
Kleiner Radius (r):
Radius des Loches (a):
Breite des Torus (b):
Oberfläche (A):
Rauminhalt (V):
Oberfläche zu Volumen (A/V):
Runden auf    Nachkommastellen.



Formeln:
a = R - r
b = 2 * ( R + r )
A = 4 * π² * R * r
V = 2 * π² * R * r²

Kreiszahl pi:
π = 3.141592653589793...

Die Radien haben die gleiche Einheit (beispielsweise Meter), die Oberfläche hat diese Einheit zum Quadrat (beispielsweise Quadratmeter), der Rauminhalt (Volumen) hat diese Einheit hoch 3 (z.B. Kubikmeter). Das Verhältnis A/V hat diese Einheit -1.

Der Torus ist ein Spezialfall des Toroides, bei dem die rotierende Basisfläche ein Kreis ist. Die geraden Querschnitte des Ringtorus sind also der Kreis (oder zwei Kreise) bei senkrechtem Schnitt und bei waagerechtem Schnitt der Kreisring. Bei zwei senkrechten Schnitten an zwei verschiedenen Stellen entsteht ein Torussektor.
Der Torus ist achsensymmetrisch zu jeder senkrechten Ebene und zu der waagerechten Ebene, jeweils durch den Mittelpunkt. Zu diesem Mittelpunkt ist er auch punktsymmetrisch und rotationssymmetrisch für jeden beliebigen Winkel.
Der Torus als Oberfläche mit Inhalt wird auch als Volltorus bezeichnet, wenn mit dem Begriff Torus nur die Oberfläche gemeint ist. Beide Begriffe spielen in der Topologie eine Rolle. Auch in der Knotentheorie ist von einem Torus die Rede, ein Torusknoten kann auf einen Torus zurückgeführt werden, welcher unverknotet ist.
Hypothetische Entwürfe von Weltraumkolonien werden oft in Torusform ausgeführt, das bekannteste derartige Desgin ist der Stanford-Torus der NASA. Durch die Drehung um die senkrechte Achse würde hierbei eine Schwerkraft simuliert, so dass am äußersten Rand der Innenseite des Torus Nutz- und Wohnfläche unter erdähnlichen Bedingungen entstünde. Der Aufwand zum Bau einer solchen Kolonie wäre sehr groß.



Glossar | Alle Angaben ohne Gewähr | © Jumk.de Webprojekte | Rechneronline





Anzeige



Anzeige



↑ hoch