1D
Gerade , Kreisbogen , Parabel , Helix , Koch-Kurve
2D
Regelmäßige Polygone: Gleichseitiges Dreieck , Quadrat , Fünfeck , Sechseck , Siebeneck , Achteck , Neuneck , Zehneck , Elfeck , Zwölfeck , Sechzehneck , Vieleck , Vieleckring
Andere Polygone: Dreieck , Rechtwinkliges Dreieck , Gleichschenkliges Dreieck , GR Dreieck , Viereck , Rechteck , Goldenes Rechteck , Raute , Parallelogramm , Halbquadrat-Deltoid , Rechtwinkliges Deltoid , Drachenviereck , Rechtwinkliges Trapez , Gleichschenkliges Trapez , Dreigleichseitiges Trapez , Trapez , Stumpfes Trapez , Sehnenviereck , Tangentenviereck , Pfeilviereck , Konkaves Viereck , Überschlagenes Rechteck , Antiparallelogramm , Hausform , Symmetrisches Fünfeck , Diagonal halbiertes Achteck , Abgeschnittenes Rechteck , Konkaves Fünfeck , Konkaves regelmäßiges Fünfeck , Verlängertes Fünfeck , Gerade halbiertes Achteck , Verlängertes Sechseck , Symmetrisches Sechseck , Parallelogon , Konkaves Sechseck , Pfeilsechseck , Rechteckiges Sechseck , L-Form , Knick , T-Form , Quadrat-Siebeneck , Abgestumpftes Quadrat , Verlängertes Achteck , Rahmen , Offener Rahmen , Gitter , Kreuz , X-Form , H-Form , Dreistern , Vierstern , Pentagramm , Hexagramm , Unikursales Hexagramm , Oktagramm , Stern von Lakshmi , Doppelter Stern , Vielzackiger Stern , Polygon
Runde Formen: Kreis , Halbkreis , Kreissektor , Kreissegment , Kreisschicht , Kreismittelsegment , Runde Ecke , Kreisecke , Kreistangentenpfeil , Tropfenform , Sichel , Spitzes Oval , Zwei Kreise , Spitzbogen , Kreisring , Kreisringsektor , Gekrümmtes Rechteck , Abgerundetes Vieleck , Abgerundetes Rechteck , Ellipse , Halbellipse , Ellipsensegment , Ellipsensektor Elliptischer Ring , Stadion , Spirale , Log. Spirale , Reuleaux-Dreieck , Zykloide , Doppelzykloide , Astroide , Hypozykloide , Kardioide , Epizykloide , Parabelsegment , Herz , Dreispitz , Kuppe , Zwischenbogendreieck , Kreisbogendreieck , Zwischenbogenviereck , Zwischenkreisviereck , Kreisbogenviereck , Kreisbogenvieleck , Kralle , Yin-Yang-Hälfte , Arbelos , Salinon , Beule , Möndchen , Drei Kreise , Vielkreis , Rundseitiges Vieleck , Rosette , Zahnrad , Oval , Ei-Umriss , Lemniskate , Superkreis , Kreisquadrat , Zweieck , Kugeldreieck
3D
Platonische Körper: Tetraeder , Würfel , Oktaeder , Dodekaeder , Ikosaeder
Archimedische Körper: Tetraederstumpf , Kuboktaeder , Hexaederstumpf , Oktaederstumpf , Rhombenkuboktaeder , Kuboktaederstumpf , Ikosidodekaeder , Dodekaederstumpf , Ikosaederstumpf , Abgeschrägtes Hexaeder , Rhombenikosidodekaeder , Ikosidodekaederstumpf , Abgeschrägtes Dodekaeder
Catalanische Körper: Triakistetraeder , Rhombendodekaeder , Triakisoktaeder , Tetrakishexaeder , Deltoidalikositetraeder , Hexakisoktaeder , Rhombentriakontaeder , Triakisikosaeder , Pentakisdodekaeder , Pentagonikositetraeder , Deltoidalhexakontaeder , Hexakisikosaeder , Pentagonhexakontaeder
Johnson-Körper: Pyramiden , Kuppeln , Rotunde , Verlängerte Pyramiden , Verdreht verlängerte Pyramiden , Bipyramiden , Verlängerte Bipyramiden , Verdreht verl. Quadratbipyramide , Verdrehter Doppelkeil , Disheptaeder , Trigondodekaeder , Sphenocorona , Disphenocingulum
Andere Polyeder: Quader , Quadratische Säule , Dreieckspyramide , Quadratische Pyramide , Regelmäßige Pyramide , Pyramide , Quadr. Pyramidenstumpf , Reg. Pyramidenstumpf , Pyramidenstumpf , Knickpyramide , Regelmäßige Doppelpyramide , Doppelpyramide , Bifrustum , Frustum-Pyramide , Rampe , Gerader Keil , Keil , Halbes Tetraeder , Rhomboeder , Parallelepiped , Regelmäßiges Prisma , Prisma , Schiefes Prisma , Antiwürfel , Antiprisma , Prismatoid , Trapezoeder , Disphenoid , Ecke , Allgemeiner Tetraeder , Keilquader , Halber Quader , Abgeschrägter Quader , Barren , Abgeschrägtes Dreikantprisma , Abgeschnittener Quader , Abgestumpfter Quader , Stumpfkantiger Quader , Verlängertes Rhombendodekaeder , Rhomboederstumpf , Obelisk , Geknickter Quader , Hohlquader , Hohlpyramide , Hohlfrustum , Sternpyramide , Sterntetraeder , Dodekaederstern , Ikosaederstern , Großes Dodekaeder , Großes Ikosaeder
Runde Formen: Kugel , Halbkugel , Kugelecke , Zylinder , Zylinderabschnitt , Schräger Zylinder , Geknickter Zylinder , Elliptischer Zylinder , Allgemeiner Zylinder , Kegel , Kegelstumpf , Schiefer Kreiskegel , Ellipsenkegel , Elliptischer Kegelstumpf , Allgemeiner Kegel , Allgemeiner Kegelstumpf , Doppelkegel , Doppelkegelstumpf , Spitze Säule , Abgerundeter Kegel , Tropfen , Sphäroid , Ellipsoid , Halbellipsoid , Kugelsektor , Kugelsegment , Kugelschicht , Kugelmittelsegment , Doppelkalotte , Kugelkeil , Halbzylinder , Diagonal halbierter Zylinder , Zylinderkeil , Zylindersektor , Zylindersegment , Abgeschrägter Zylinder , Halbkegel , Kegelsektor , Kegelkeil , Kugelschale , Halbkugelschale , Hohlzylinder , Hohlzylinderabschnitt , Schräger Hohlzylinder , Hohlkegel , Hohlkegelstumpf , Kugelring , Torus , Spindeltorus , Toroid , Torussektor , Toroidsektor , Bogen , Reuleaux-Tetraeder , Kapsel , Kapselsegment , Doppelspitz , Antikegel , Antikegelstumpf , Kugelzylinder , Linse , Konkave Linse , Fass , Ei-Form , Paraboloid , Hyperboloid , Oloid , Steinmetzkörper , Rotationskörper
4D
Tesserakt , Hypersphäre
Anzeige
Rauten - Rechner
Berechnungen bei einer Raute (Rhombus). Eine Raute ist ein Viereck mit vier gleichlangen Seiten. Die gegenüberliegenden Seiten sind parallel. Geben Sie Seitenlänge und einen Winkel ein, runden Sie bei Bedarf und klicken Sie auf Berechnen. Winkel bitte in Grad angeben, hier kann man Winkel umrechnen .
Formeln:
β = 180° - α
u = 4 * a
A = a² * sin ( α )
e = 2 * a * cos ( α / 2 )
f = 2 * a * sin ( α / 2 )
rI = a / 2 * sin ( α )
h = A / a = a * sin ( α )
Seitenlänge, Diagonale, Umfang, Inkreisradius und Höhe haben die gleiche Einheit (beispielsweise Meter), der Flächeninhalt hat diese Einheit zum Quadrat (beispielsweise Quadratmeter).
Anzeige
Diagonale und Seitenhalbierende treffen sich in einem Punkt, dieser ist Inkreismittelpunkt und Schwerpunkt. Zu diesem ist die Raute punktsymmetrisch und rotationssymmetrisch bei einer Rotation von 180° oder Vielfachen davon. Des weiteren ist die Raute achsensymmetrisch zu den Diagonalen. Die Diagonalen sind gleichzeitig die Winkelhalbierenden. Die Längen der Seitenhalbierenden sind gleich der Längen der entsprechenden parallelen Seiten. Da alle Seiten gleichlang sind, wird nur die Länge einer Seite angegeben.
Umfang u, Flächeninhalt A Seiten und Winkel Diagonalen
Höhe Seitenhalbierende Inkreis
Glossar | Alle Angaben ohne Gewähr | ©
Jumk.de Webprojekte |
Rechneronline
Anzeige