Geometrie | Formen | Glossar | Impressum & Datenschutz Geometrierechner English: Geometric Calculators, Forms

1D Gerade, Kreisbogen, Parabel, Helix, Koch-Kurve
2D Regelmäßige Polygone:
Gleichseitiges Dreieck, Quadrat, Fünfeck, Sechseck, Siebeneck, Achteck, Neuneck, Zehneck, Elfeck, Zwölfeck, Sechzehneck, Vieleck, Vieleckring

Andere Polygone:
Dreieck, Rechtwinkliges Dreieck, Gleichschenkliges Dreieck, GR Dreieck, 1/2 GS Dreieck, Goldenes Dreieck, Viereck, Rechteck, Goldenes Rechteck, Raute, Gleichdiagonale Raute, Parallelogramm, Drachenviereck, 60-90-120-Deltoid, Halbquadrat-Deltoid, Rechtwinkliges Deltoid, Trapez, Rechtwinkliges Trapez, Gleichschenkliges Trapez, Dreigleichseitiges Trapez, Stumpfes Trapez, Sehnenviereck, Tangentenviereck, Pfeilviereck, Konkaves Viereck, Überschlagenes Rechteck, Antiparallelogramm, Hausform, Symmetrisches Fünfeck, Diagonal halbiertes Achteck, Abgeschnittenes Rechteck, Konkaves Fünfeck, Konkaves regelmäßiges Fünfeck, Verlängertes Fünfeck, Gerade halbiertes Achteck, Verlängertes Sechseck, Symmetrisches Sechseck, Halbregelmäßiges Sechseck, Parallelogon, Konkaves Sechseck, Pfeilsechseck, Rechteckiges Sechseck, L-Form, Knick, T-Form, Quadrat-Siebeneck, Abgestumpftes Quadrat, Verlängertes Achteck, Rahmen, Offener Rahmen, Gitter, Kreuz, X-Form, H-Form, Dreistern, Vierstern, Pentagramm, Hexagramm, Unikursales Hexagramm, Oktagramm, Stern von Lakshmi, Doppelter Stern, Vielzackiger Stern, The Hat, Polygon

Runde Formen:
Kreis, Halbkreis, Kreissektor, Kreissegment, Kreisschicht, Kreismittelsegment, Runde Ecke, Kreisecke, Kreistangentenpfeil, Tropfenform, Sichel, Spitzes Oval, Zwei Kreise, Spitzbogen, Kreisring, Halbkreisring, Kreisringsektor, Kreisringsegment, Käsch, Gekrümmtes Rechteck, Abgerundetes Vieleck, Abgerundetes Rechteck, Ellipse, Halbellipse, Ellipsensegment, Ellipsensektor Elliptischer Ring, Stadion, Stadionsegment, Spirale, Log. Spirale, Reuleaux-Dreieck, Zykloide, Doppelzykloide, Astroide, Hypozykloide, Kardioide, Epizykloide, Parabelsegment, Herz, Dreispitz, Halbkreisspitz, Kuppe, Verlängerter Halbkreis, Zwischenbogendreieck, Kreisbogendreieck, Zwischenbogenviereck, Zwischenkreisviereck, Kreisbogenviereck, Kreisbogenvieleck, Kralle, Yin-Yang-Hälfte, Arbelos, Salinon, Beule, Möndchen, Drei Kreise, Vielkreis, Rundseitiges Vieleck, Rosette, Zahnrad, Oval, Ei-Umriss, Lemniskate, Superkreis, Kreisquadrat, Zweieck, Kugeldreieck
3D Platonische Körper:
Tetraeder, Würfel, Oktaeder, Dodekaeder, Ikosaeder

Archimedische Körper:
Tetraederstumpf, Kuboktaeder, Hexaederstumpf, Oktaederstumpf, Rhombenkuboktaeder, Kuboktaederstumpf, Ikosidodekaeder, Dodekaederstumpf, Ikosaederstumpf, Abgeschrägtes Hexaeder, Rhombenikosidodekaeder, Ikosidodekaederstumpf, Abgeschrägtes Dodekaeder

Catalanische Körper:
Triakistetraeder, Rhombendodekaeder, Triakisoktaeder, Tetrakishexaeder, Deltoidalikositetraeder, Hexakisoktaeder, Rhombentriakontaeder, Triakisikosaeder, Pentakisdodekaeder, Pentagonikositetraeder, Deltoidalhexakontaeder, Hexakisikosaeder, Pentagonhexakontaeder

Johnson-Körper:
Pyramiden, Kuppeln, Rotunde, Verlängerte Pyramiden, Verdreht verlängerte Pyramiden, Bipyramiden, Verlängerte Bipyramiden, Verdreht verl. Quadratbipyramide, Verdrehter Doppelkeil, Disheptaeder, Trigondodekaeder, Sphenocorona, Disphenocingulum

Andere Polyeder:
Quader, Quadratische Säule, Dreieckspyramide, Quadratische Pyramide, Regelmäßige Pyramide, Pyramide, Quadr. Pyramidenstumpf, Reg. Pyramidenstumpf, Pyramidenstumpf, Knickpyramide, Regelmäßige Doppelpyramide, Doppelpyramide, Bifrustum, Frustum-Pyramide, Rampe, Gerader Keil, Keil, Halbes Tetraeder, Rhomboeder, Parallelepiped, Regelmäßiges Prisma, Prisma, Schiefes Prisma, Antiwürfel, Antiprisma, Prismatoid, Trapezoeder, Disphenoid, Ecke, Allgemeiner Tetraeder, Keilquader, Halber Quader, Abgeschrägter Quader, Barren, Abgeschrägtes Dreikantprisma, Abgeschnittener Quader, Abgestumpfter Quader, Stumpfkantiger Quader, Verlängertes Rhombendodekaeder, Rhomboederstumpf, Obelisk, Geknickter Quader, Hohlquader, Hohlpyramide, Hohlfrustum, Sternpyramide, Sterntetraeder, Dodekaederstern, Ikosaederstern, Großes Dodekaeder, Großes Ikosaeder

Runde Formen:
Kugel, Halbkugel, Viertelkugel, Kugelecke, Zylinder, Zylinderabschnitt, Schräger Zylinder, Geknickter Zylinder, Elliptischer Zylinder, Allgemeiner Zylinder, Kegel, Kegelstumpf, Schiefer Kreiskegel, Ellipsenkegel, Elliptischer Kegelstumpf, Allgemeiner Kegel, Allgemeiner Kegelstumpf, Doppelkegel, Doppelkegelstumpf, Spitze Säule, Abgerundeter Kegel, Verlängerte Halbkugel, Tropfen, Sphäroid, Ellipsoid, Halbellipsoid, Kugelsektor, Kugelsegment, Kugelschicht, Kugelmittelsegment, Doppelkalotte, Abgerundete Scheibe, Doppelkugel, Kugelkeil, Halbzylinder, Diagonal halbierter Zylinder, Zylinderkeil, Zylindersektor, Zylindersegment, Abgeschrägter Zylinder, Halbkegel, Kegelsektor, Kegelkeil, Kugelschale, Halbkugelschale, Kugelschalensegment, Hohlzylinder, Hohlzylinderabschnitt, Schräger Hohlzylinder, Hohlkegel, Hohlkegelstumpf, Kugelring, Torus, Spindeltorus, Toroid, Torussektor, Toroidsektor, Bogen, Reuleaux-Tetraeder, Kapsel, Halbkapsel, Kapselsegment, Doppelspitz, Antikegel, Antikegelstumpf, Kugelzylinder, Linse, Konkave Linse, Fass, Ei-Form, Paraboloid, Hyperboloid, Oloid, Steinmetzkörper, Rotationskörper
4D Tesserakt, Hypersphäre


Anzeige


Ei-Form - Rechner

Berechnungen mit einer Ei-Form. Ein Ei ist meistens ein Ovoid, ein dreidimensionales Oval, dessen Berechnung extrem kompliziert ist. Hier wird als Näherung an die eiförmige Gestalt ein Körper aus zwei halben Sphäroiden mit gleichem Basisradius verwendet. Für viele Eier, insbesondere Hühnereier, ist dies eine gute Näherung.
Geben Sie den Basisradius und beide Halbhöhen ein, runden Sie bei Bedarf und klicken Sie auf Berechnen.


Euklid Basisradius (a): Eiform
Querschnitt: Ei-Umriss
Erste Halbhöhe (h1):
Zweite Halbhöhe (h2):
Höhe (h):
Breite (b):
Oberfläche (A):
Rauminhalt (V):
Oberfläche zu Volumen (A/V):
Runden auf    Nachkommastellen.



Formeln:
h = h1 + h2
b = 2 * a

falls a > hi: Ai = πa * [ a + hi² / √ a² - hi² * arsinh( √ a² - hi² / hi ) ]
falls a < hi: Ai = πa * [ a + hi² / √ hi² - a² * arcsin( √ hi² - a² / hi ) ]
falls a = hi: Ai = 2πa² (Halbkugel)
A = A1 + A2

V = 2/3 * π * a² * h

Kreiszahl pi:
π = 3.141592653589793...

Radius, Höhen und Breite haben die gleiche Einheit (beispielsweise Meter), die Oberfläche hat diese Einheit zum Quadrat (beispielsweise Quadratmeter), der Rauminhalt (Volumen) hat diese Einheit hoch 3 (z.B. Kubikmeter). Das Verhältnis A/V hat diese Einheit -1.

Eine andere Ei-Form erhält man, wenn man auf der Basis von einem Oval in der Konstruktion nach Dürer einen Rotationskörper erzeugt. Deren spitze Seite läuft spitzer zu als bei der obigen Ei-Form aus zwei halben Sphäroiden. Das Dürer-Ei hat immer eine Halbkugel am flachen Ende, was sich natürlich auch mit einem halben Sphäroid darstellen lässt. Die Berechnung eines Rotationskörpers und damit vom Dürer-Ei ist allerdings wesentlich komplizierter als die des obigen.
Generell lassen sich runde, dreidimensionale Formen umso leichter berechnen, je kugelförmiger sie sind und das Volumen ist zumeist einfacher ausrechenbar als der Flächeninhalt der Oberfläche. Bei der Kugel hängt alles an der Kreiszahl π, beim Sphäroid muss man für die Oberflächenberechnung schon tiefer in die mathematische Trickkiste greifen und bei dem Ellipsoid schließlich muss man sich für exakte Werte mit Integralen herumschlagen. Dies gilt auch, wenn die runde Form durch eine mathematische Kurve definiert wird. Ist dies nicht der Fall, hilft nur noch ausmessen oder schätzen. Da der Begriff Ei-Form nicht exakt definiert ist, nimmt man die einfachste Möglichkeit, so lange es keinen guten Grund gibt, eine kompliziertere zu wählen.



Glossar | Alle Angaben ohne Gewähr | © Jumk.de Webprojekte | Rechneronline





Anzeige



Anzeige



↑ hoch