Geometrie | Formen | Glossar | Impressum & Datenschutz Geometrierechner English: Geometric Calculators, Forms

1D Gerade, Kreisbogen, Parabel, Helix, Koch-Kurve
2D Regelmäßige Polygone:
Gleichseitiges Dreieck, Quadrat, Fünfeck, Sechseck, Siebeneck, Achteck, Neuneck, Zehneck, Elfeck, Zwölfeck, Sechzehneck, Vieleck, Vieleckring

Andere Polygone:
Dreieck, Rechtwinkliges Dreieck, Gleichschenkliges Dreieck, GR Dreieck, 1/2 GS Dreieck, Goldenes Dreieck, Viereck, Rechteck, Goldenes Rechteck, Raute, Parallelogramm, Drachenviereck, 60-90-120-Deltoid, Halbquadrat-Deltoid, Rechtwinkliges Deltoid, Trapez, Rechtwinkliges Trapez, Gleichschenkliges Trapez, Dreigleichseitiges Trapez, Stumpfes Trapez, Sehnenviereck, Tangentenviereck, Pfeilviereck, Konkaves Viereck, Überschlagenes Rechteck, Antiparallelogramm, Hausform, Symmetrisches Fünfeck, Diagonal halbiertes Achteck, Abgeschnittenes Rechteck, Konkaves Fünfeck, Konkaves regelmäßiges Fünfeck, Verlängertes Fünfeck, Gerade halbiertes Achteck, Verlängertes Sechseck, Symmetrisches Sechseck, Halbregelmäßiges Sechseck, Parallelogon, Konkaves Sechseck, Pfeilsechseck, Rechteckiges Sechseck, L-Form, Knick, T-Form, Quadrat-Siebeneck, Abgestumpftes Quadrat, Verlängertes Achteck, Rahmen, Offener Rahmen, Gitter, Kreuz, X-Form, H-Form, Dreistern, Vierstern, Pentagramm, Hexagramm, Unikursales Hexagramm, Oktagramm, Stern von Lakshmi, Doppelter Stern, Vielzackiger Stern, The Hat, Polygon

Runde Formen:
Kreis, Halbkreis, Kreissektor, Kreissegment, Kreisschicht, Kreismittelsegment, Runde Ecke, Kreisecke, Kreistangentenpfeil, Tropfenform, Sichel, Spitzes Oval, Zwei Kreise, Spitzbogen, Kreisring, Halbkreisring, Kreisringsektor, Kreisringsegment, Käsch, Gekrümmtes Rechteck, Abgerundetes Vieleck, Abgerundetes Rechteck, Ellipse, Halbellipse, Ellipsensegment, Ellipsensektor Elliptischer Ring, Stadion, Stadionsegment, Spirale, Log. Spirale, Reuleaux-Dreieck, Zykloide, Doppelzykloide, Astroide, Hypozykloide, Kardioide, Epizykloide, Parabelsegment, Herz, Dreispitz, Halbkreisspitz, Kuppe, Verlängerter Halbkreis, Zwischenbogendreieck, Kreisbogendreieck, Zwischenbogenviereck, Zwischenkreisviereck, Kreisbogenviereck, Kreisbogenvieleck, Kralle, Yin-Yang-Hälfte, Arbelos, Salinon, Beule, Möndchen, Drei Kreise, Vielkreis, Rundseitiges Vieleck, Rosette, Zahnrad, Oval, Ei-Umriss, Lemniskate, Superkreis, Kreisquadrat, Zweieck, Kugeldreieck
3D Platonische Körper:
Tetraeder, Würfel, Oktaeder, Dodekaeder, Ikosaeder

Archimedische Körper:
Tetraederstumpf, Kuboktaeder, Hexaederstumpf, Oktaederstumpf, Rhombenkuboktaeder, Kuboktaederstumpf, Ikosidodekaeder, Dodekaederstumpf, Ikosaederstumpf, Abgeschrägtes Hexaeder, Rhombenikosidodekaeder, Ikosidodekaederstumpf, Abgeschrägtes Dodekaeder

Catalanische Körper:
Triakistetraeder, Rhombendodekaeder, Triakisoktaeder, Tetrakishexaeder, Deltoidalikositetraeder, Hexakisoktaeder, Rhombentriakontaeder, Triakisikosaeder, Pentakisdodekaeder, Pentagonikositetraeder, Deltoidalhexakontaeder, Hexakisikosaeder, Pentagonhexakontaeder

Johnson-Körper:
Pyramiden, Kuppeln, Rotunde, Verlängerte Pyramiden, Verdreht verlängerte Pyramiden, Bipyramiden, Verlängerte Bipyramiden, Verdreht verl. Quadratbipyramide, Verdrehter Doppelkeil, Disheptaeder, Trigondodekaeder, Sphenocorona, Disphenocingulum

Andere Polyeder:
Quader, Quadratische Säule, Dreieckspyramide, Quadratische Pyramide, Regelmäßige Pyramide, Pyramide, Quadr. Pyramidenstumpf, Reg. Pyramidenstumpf, Pyramidenstumpf, Knickpyramide, Regelmäßige Doppelpyramide, Doppelpyramide, Bifrustum, Frustum-Pyramide, Rampe, Gerader Keil, Keil, Halbes Tetraeder, Rhomboeder, Parallelepiped, Regelmäßiges Prisma, Prisma, Schiefes Prisma, Antiwürfel, Antiprisma, Prismatoid, Trapezoeder, Disphenoid, Ecke, Allgemeiner Tetraeder, Keilquader, Halber Quader, Abgeschrägter Quader, Barren, Abgeschrägtes Dreikantprisma, Abgeschnittener Quader, Abgestumpfter Quader, Stumpfkantiger Quader, Verlängertes Rhombendodekaeder, Rhomboederstumpf, Obelisk, Geknickter Quader, Hohlquader, Hohlpyramide, Hohlfrustum, Sternpyramide, Sterntetraeder, Dodekaederstern, Ikosaederstern, Großes Dodekaeder, Großes Ikosaeder

Runde Formen:
Kugel, Halbkugel, Viertelkugel, Kugelecke, Zylinder, Zylinderabschnitt, Schräger Zylinder, Geknickter Zylinder, Elliptischer Zylinder, Allgemeiner Zylinder, Kegel, Kegelstumpf, Schiefer Kreiskegel, Ellipsenkegel, Elliptischer Kegelstumpf, Allgemeiner Kegel, Allgemeiner Kegelstumpf, Doppelkegel, Doppelkegelstumpf, Spitze Säule, Abgerundeter Kegel, Verlängerte Halbkugel, Tropfen, Sphäroid, Ellipsoid, Halbellipsoid, Kugelsektor, Kugelsegment, Kugelschicht, Kugelmittelsegment, Doppelkalotte, Abgerundete Scheibe, Doppelkugel, Kugelkeil, Halbzylinder, Diagonal halbierter Zylinder, Zylinderkeil, Zylindersektor, Zylindersegment, Abgeschrägter Zylinder, Halbkegel, Kegelsektor, Kegelkeil, Kugelschale, Halbkugelschale, Kugelschalensegment, Hohlzylinder, Hohlzylinderabschnitt, Schräger Hohlzylinder, Hohlkegel, Hohlkegelstumpf, Kugelring, Torus, Spindeltorus, Toroid, Torussektor, Toroidsektor, Bogen, Reuleaux-Tetraeder, Kapsel, Halbkapsel, Kapselsegment, Doppelspitz, Antikegel, Antikegelstumpf, Kugelzylinder, Linse, Konkave Linse, Fass, Ei-Form, Paraboloid, Hyperboloid, Oloid, Steinmetzkörper, Rotationskörper
4D Tesserakt, Hypersphäre


Anzeige


Sehnenviereck - Rechner

Berechnungen bei einem Sehnenviereck. Ein Sehnenviereck ist ein Viereck, bei dem alle Eckpunkte auf einem Kreis liegen. Eine Sehne ist die gerade Verbindung zweier Punkte auf einer Kurve.
Geben Sie die vier Seiten (Sehnen) a, b, c und d ein, runden Sie bei Bedarf und klicken Sie auf Berechnen. Die Ausgabe der Winkel erfolgt in Grad, hier kann man Winkel umrechnen.


Ptolemäus Seite a: Sehnenviereck
Seite b:
Seite c:
Seite d:
Diagonale e:
Diagonale f:
Winkel bei A (α):
Winkel bei B (β):
Winkel bei C (γ):
Winkel bei D (δ):
Umfang (u):
Umkreisradius (rU):
Flächeninhalt (A):
Runden auf    Nachkommastellen.



Formeln:
e = √ (ac+bd) * (ad+bc) / (ab+cd)
f = √ (ab+cd) * (ac+bd) / (ad+bc)
a * c + b * d = e * f (Satz des Ptolemäus)
α = arccos( (a²+d²-b²-c²) / (2*(ad+bc)) )
δ = arccos( (d²+c²-a²-b²) / (2*(dc+ab)) )
β = 180° - δ
γ = 180° - α
u = a + b + c + d
Halbumfang s = u / 2
A = √ (s-a) * (s-b) * (s-c) * (s-d)
rU = 1/(4*A) * √ (ab+cd) * (ac+bd) * (ad+bc)

Seitenlängen, Diagonalen, Umfang und Radius haben die gleiche Einheit (beispielsweise Meter), der Flächeninhalt hat diese Einheit zum Quadrat (z.B. Quadratmeter).


Anzeige

Der Mittelpunkt des Kreises liegt auf dem Schnittpunkt zweier Mittelsenkrechter. Diese kann man konstruieren, indem man um zwei benachbarte Eckpunkt gleich große, sich schneidende Kreise zieht und deren Schnittpunkte verbindet.

Sehnenviereck, Umfang und Flächeninhalt
Umfang u, Flächeninhalt A
Sehnenviereck, Seiten und Winkel
Seiten und Winkel

Sehnenviereck, Radius und Umkreis
Radius und Umkreis
Sehnenviereck, Mittelsenkrechte
Mittelsenkrechte

Als Sehne bezeichnet man die gerade Verbindung zweier Punkt auf einer Kurve, wobei diese Kurve oft, wie hier, eine Kreisbahn ist. Das Sehnenviereck setzt sich also aus vier Sehnen zusammen, von denen jeweils zwei in einem Punkt auf dem Kreis ausgehen, ohne dass sich diese Sehnen schneiden. Der Satz des Ptolemäus, welcher sich auf die Längen der Seiten und der beiden Diagonalen im Sehnenviereck bezieht, kann als Verallgemeinerung des wesentlich bekannteren Satz des Pythagoras aufgefasst werden. Er lautet ausgeschrieben: das Produkt beider Diagonalenlängen ist gleich der Summe der Produkte beider gegenüber liegender Seitenlängen. Dieser Satz wurde von Claudius Ptolemäus aufgestellt, welcher im zweiten Jahrhundert in Alexandria in Ägypten tätig war und sich vor allem mit Astronomie und Geometrie beschäftigte. Sein geozentrisches Weltbild, bei dem die Erde im Mittelpunkt steht und von der Sonne und den andren Planeten umkreist wird, war Jahrhunderte lang in Gebrauch, erwies sich aber schließlich als grundfalsch. Der Satz des Ptolemäus dagegen ist immer noch korrekt.



Glossar | Alle Angaben ohne Gewähr | © Jumk.de Webprojekte | Rechneronline





Anzeige



Anzeige



↑ hoch