Anzeige


Geometrie | Formen | Glossar | Impressum & Datenschutz Geometrierechner English: Geometric Calculators, Forms

  1D Gerade
2D Regelmäßige Polygone:
Gleichseitiges Dreieck, Quadrat, Fünfeck, Sechseck, Siebeneck, Achteck, Neuneck, Zehneck, Elfeck, Zwölfeck, Sechzehneck, Vieleck, Vieleckring

Andere Polygone:
Dreieck, Rechtwinkliges Dreieck, Gleichschenkliges Dreieck, GR Dreieck, Viereck, Rechteck, Raute, Parallelogramm, Halbquadrat-Deltoid, Rechtwinkliges Deltoid, Drachenviereck, Rechtwinkliges Trapez, Gleichschenkliges Trapez, Dreigleichseitiges Trapez, Trapez, Sehnenviereck, Tangentenviereck, Pfeilviereck, Konkaves Viereck, Überschlagenes Rechteck, Antiparallelogramm, Hausform, Symmetrisches Fünfeck, Konkaves Fünfeck, Konkaves regelmäßiges Fünfeck, Parallelogon, Verlängertes Sechseck, Konkaves Sechseck, Pfeilsechseck, L-Form, Knick, Abgestumpftes Quadrat, Rahmen, Dreistern, Vierstern, Pentagramm, Hexagramm, Unikursales Hexagramm, Kreuz, Oktagramm, Stern von Lakshmi, Vielzackiger Stern, Polygon

Runde Formen:
Kreis, Halbkreis, Kreissektor, Kreissegment, Kreisschicht, Runde Ecke, Kreisecke, Kreistangentenpfeil, Tropfenform, Sichel, Spitzes Oval, Spitzbogen, Kreisring, Kreisringsektor, Gekrümmtes Rechteck, Abgerundetes Vieleck, Abgerundetes Rechteck, Ellipse, Halbellipse, Ellipsensegment, Ellipsensektor Elliptischer Ring, Stadion, Spirale, Log. Spirale, Reuleaux-Dreieck, Zykloide, Astroide, Hypozykloide, Kardioide, Epizykloide, Parabelsegment, Dreispitz, Kuppe, Zwischenbogendreieck, Kreisbogendreieck, Kreisbogenviereck, Arbelos, Salinon, Möndchen, Drei Kreise, Vielkreis, Rundseitiges Vieleck, Rosette, Zahnrad, Oval, Ei-Umriss, Lemniskate, Superkreis, Zweieck, Kugeldreieck
3D Platonische Körper:
Tetraeder, Würfel, Oktaeder, Dodekaeder, Ikosaeder

Archimedische Körper:
Tetraederstumpf, Kuboktaeder, Hexaederstumpf, Oktaederstumpf, Rhombenkuboktaeder, Kuboktaederstumpf, Ikosidodekaeder, Dodekaederstumpf, Ikosaederstumpf, Abgeschrägtes Hexaeder, Rhombenikosidodekaeder, Ikosidodekaederstumpf, Abgeschrägtes Dodekaeder

Catalanische Körper:
Triakistetraeder, Rhombendodekaeder, Triakisoktaeder, Tetrakishexaeder, Deltoidalikositetraeder, Hexakisoktaeder, Rhombentriakontaeder, Triakisikosaeder, Pentakisdodekaeder, Pentagonikositetraeder, Deltoidalhexakontaeder, Hexakisikosaeder, Pentagonhexakontaeder

Johnson-Körper:
Pyramiden, Kuppeln, Rotunde, Verlängerte Pyramiden, Verdreht verlängerte Pyramiden, Bipyramiden, Verlängerte Bipyramiden, Disheptaeder, Trigondodekaeder, Sphenocorona, Disphenocingulum

Andere Polyeder:
Quader, Quadratische Säule, Dreieckspyramide, Quadratische Pyramide, Regelmäßige Pyramide, Pyramide, Reg. Pyramidenstumpf, Pyramidenstumpf, Doppelpyramide, Bifrustum, Rampe, Gerader Keil, Keil, Halbes Tetraeder, Rhomboeder, Parallelepiped, Prisma, Schiefes Prisma, Antiprisma, Prismatoid, Trapezoeder, Disphenoid, Ecke, Allgemeiner Tetraeder, Keilquader, Halber Quader, Abgeschrägter Quader, Abgeschrägtes Dreikantprisma, Stumpfkantiger Quader, Verlängertes Rhombendodekaeder, Rhomboederstumpf, Obelisk, Hohlquader, Hohlpyramide, Hohlfrustum, Sternpyramide, Sterntetraeder, Dodekaederstern, Ikosaederstern, Großes Dodekaeder, Großes Ikosaeder

Runde Formen:
Kugel, Halbkugel, Kugelecke, Zylinder, Zylinderabschnitt, Schräger Zylinder, Allgemeiner Zylinder, Kegel, Kegelstumpf, Schiefer Kreiskegel, Ellipsenkegel, Doppelkegel, Doppelkegelstumpf, Abgerundeter Kegel, Tropfen, Sphäroid, Ellipsoid, Halbellipsoid, Kugelsektor, Kugelsegment, Kugelschicht, Kugelkeil, Zylinderkeil, Zylindersektor, Zylindersegment, Abgeschrägter Zylinder, Kegelsektor, Kegelkeil, Kugelschale, Hohlzylinder, Schräger Hohlzylinder, Hohlkegel, Hohlkegelstumpf, Kugelring, Torus, Spindeltorus, Toroid, Torussektor, Toroidsektor, Bogen, Reuleaux-Tetraeder, Kapsel, Linse, Fass, Ei-Form, Paraboloid, Hyperboloid, Oloid, Steinmetzkörper, Rotationskörper
4D Tesserakt, Hypersphäre


Anzeige


Gerade berechnen

Berechnen der Geradengleichung aus zwei Punkten oder der Koordinaten eines Punktes auf dieser Gerade. Eine Gerade ist eine unendlich lange, eindimensionale Linie, sie liegt auf der kürzesten Verbindung zweier Punkte und geht über diese hinaus. Geben Sie die Koordinaten (x,y) der beiden Punkte ein, oder Steigung m und vertikale Verschiebung b der Geradengleichung y=mx+b und eine Koordinate eines Punktes. Der Abstand beider Punkte wird berechnet, wenn alle vier Koordinaten gegeben sind. Runden Sie bei Bedarf und klicken Sie auf Berechnen.


Euklid Koordinate x1: Gerade
Koordinate y1:
Koordinate x2:
Koordinate y2:
Steigung m:
Verschiebung b:
Abstand beider Punkte (d):
Runden auf    Nachkommastellen.



Formeln:
yi = mxi + b (Geradengleichung)
m = ( y2 - y1 ) / ( x2 - x1 )
b = y1 - x1 * m
d = √ (x2 - x1)² + (y2 - y1

Die Gerade im Koordinatensystem zeichnen kann man mit dem Funktionsgraphen-Zeichner. Dort mx+b mit den Werten für m und b als Formel für den Graphen eingeben.




Anzeige


Teilen:  

Glossar | Alle Angaben ohne Gewähr | © Jumk.de Webprojekte | Rechneronline




Anzeige


Anzeige

↑ hoch