Geometrie | Formen | Glossar | Impressum & Datenschutz Geometrierechner English: Geometric Calculators, Forms

1D Gerade, Kreisbogen, Parabel, Helix, Koch-Kurve
2D Regelmäßige Polygone:
Gleichseitiges Dreieck, Quadrat, Fünfeck, Sechseck, Siebeneck, Achteck, Neuneck, Zehneck, Elfeck, Zwölfeck, Sechzehneck, Vieleck, Vieleckring

Andere Polygone:
Dreieck, Rechtwinkliges Dreieck, Gleichschenkliges Dreieck, GR Dreieck, 1/2 GS Dreieck, Viereck, Rechteck, Goldenes Rechteck, Raute, Parallelogramm, Drachenviereck, 60-90-120-Deltoid, Halbquadrat-Deltoid, Rechtwinkliges Deltoid, Trapez, Rechtwinkliges Trapez, Gleichschenkliges Trapez, Dreigleichseitiges Trapez, Stumpfes Trapez, Sehnenviereck, Tangentenviereck, Pfeilviereck, Konkaves Viereck, Überschlagenes Rechteck, Antiparallelogramm, Hausform, Symmetrisches Fünfeck, Diagonal halbiertes Achteck, Abgeschnittenes Rechteck, Konkaves Fünfeck, Konkaves regelmäßiges Fünfeck, Verlängertes Fünfeck, Gerade halbiertes Achteck, Verlängertes Sechseck, Symmetrisches Sechseck, Halbregelmäßiges Sechseck, Parallelogon, Konkaves Sechseck, Pfeilsechseck, Rechteckiges Sechseck, L-Form, Knick, T-Form, Quadrat-Siebeneck, Abgestumpftes Quadrat, Verlängertes Achteck, Rahmen, Offener Rahmen, Gitter, Kreuz, X-Form, H-Form, Dreistern, Vierstern, Pentagramm, Hexagramm, Unikursales Hexagramm, Oktagramm, Stern von Lakshmi, Doppelter Stern, Vielzackiger Stern, The Hat, Polygon

Runde Formen:
Kreis, Halbkreis, Kreissektor, Kreissegment, Kreisschicht, Kreismittelsegment, Runde Ecke, Kreisecke, Kreistangentenpfeil, Tropfenform, Sichel, Spitzes Oval, Zwei Kreise, Spitzbogen, Kreisring, Halbkreisring, Kreisringsektor, Kreisringsegment, Käsch, Gekrümmtes Rechteck, Abgerundetes Vieleck, Abgerundetes Rechteck, Ellipse, Halbellipse, Ellipsensegment, Ellipsensektor Elliptischer Ring, Stadion, Spirale, Log. Spirale, Reuleaux-Dreieck, Zykloide, Doppelzykloide, Astroide, Hypozykloide, Kardioide, Epizykloide, Parabelsegment, Herz, Dreispitz, Halbkreisspitz, Kuppe, Zwischenbogendreieck, Kreisbogendreieck, Zwischenbogenviereck, Zwischenkreisviereck, Kreisbogenviereck, Kreisbogenvieleck, Kralle, Yin-Yang-Hälfte, Arbelos, Salinon, Beule, Möndchen, Drei Kreise, Vielkreis, Rundseitiges Vieleck, Rosette, Zahnrad, Oval, Ei-Umriss, Lemniskate, Superkreis, Kreisquadrat, Zweieck, Kugeldreieck
3D Platonische Körper:
Tetraeder, Würfel, Oktaeder, Dodekaeder, Ikosaeder

Archimedische Körper:
Tetraederstumpf, Kuboktaeder, Hexaederstumpf, Oktaederstumpf, Rhombenkuboktaeder, Kuboktaederstumpf, Ikosidodekaeder, Dodekaederstumpf, Ikosaederstumpf, Abgeschrägtes Hexaeder, Rhombenikosidodekaeder, Ikosidodekaederstumpf, Abgeschrägtes Dodekaeder

Catalanische Körper:
Triakistetraeder, Rhombendodekaeder, Triakisoktaeder, Tetrakishexaeder, Deltoidalikositetraeder, Hexakisoktaeder, Rhombentriakontaeder, Triakisikosaeder, Pentakisdodekaeder, Pentagonikositetraeder, Deltoidalhexakontaeder, Hexakisikosaeder, Pentagonhexakontaeder

Johnson-Körper:
Pyramiden, Kuppeln, Rotunde, Verlängerte Pyramiden, Verdreht verlängerte Pyramiden, Bipyramiden, Verlängerte Bipyramiden, Verdreht verl. Quadratbipyramide, Verdrehter Doppelkeil, Disheptaeder, Trigondodekaeder, Sphenocorona, Disphenocingulum

Andere Polyeder:
Quader, Quadratische Säule, Dreieckspyramide, Quadratische Pyramide, Regelmäßige Pyramide, Pyramide, Quadr. Pyramidenstumpf, Reg. Pyramidenstumpf, Pyramidenstumpf, Knickpyramide, Regelmäßige Doppelpyramide, Doppelpyramide, Bifrustum, Frustum-Pyramide, Rampe, Gerader Keil, Keil, Halbes Tetraeder, Rhomboeder, Parallelepiped, Regelmäßiges Prisma, Prisma, Schiefes Prisma, Antiwürfel, Antiprisma, Prismatoid, Trapezoeder, Disphenoid, Ecke, Allgemeiner Tetraeder, Keilquader, Halber Quader, Abgeschrägter Quader, Barren, Abgeschrägtes Dreikantprisma, Abgeschnittener Quader, Abgestumpfter Quader, Stumpfkantiger Quader, Verlängertes Rhombendodekaeder, Rhomboederstumpf, Obelisk, Geknickter Quader, Hohlquader, Hohlpyramide, Hohlfrustum, Sternpyramide, Sterntetraeder, Dodekaederstern, Ikosaederstern, Großes Dodekaeder, Großes Ikosaeder

Runde Formen:
Kugel, Halbkugel, Kugelecke, Zylinder, Zylinderabschnitt, Schräger Zylinder, Geknickter Zylinder, Elliptischer Zylinder, Allgemeiner Zylinder, Kegel, Kegelstumpf, Schiefer Kreiskegel, Ellipsenkegel, Elliptischer Kegelstumpf, Allgemeiner Kegel, Allgemeiner Kegelstumpf, Doppelkegel, Doppelkegelstumpf, Spitze Säule, Abgerundeter Kegel, Tropfen, Sphäroid, Ellipsoid, Halbellipsoid, Kugelsektor, Kugelsegment, Kugelschicht, Kugelmittelsegment, Doppelkalotte, Doppelkugel, Kugelkeil, Halbzylinder, Diagonal halbierter Zylinder, Zylinderkeil, Zylindersektor, Zylindersegment, Abgeschrägter Zylinder, Halbkegel, Kegelsektor, Kegelkeil, Kugelschale, Halbkugelschale, Kugelschalensegment, Hohlzylinder, Hohlzylinderabschnitt, Schräger Hohlzylinder, Hohlkegel, Hohlkegelstumpf, Kugelring, Torus, Spindeltorus, Toroid, Torussektor, Toroidsektor, Bogen, Reuleaux-Tetraeder, Kapsel, Kapselsegment, Doppelspitz, Antikegel, Antikegelstumpf, Kugelzylinder, Linse, Konkave Linse, Fass, Ei-Form, Paraboloid, Hyperboloid, Oloid, Steinmetzkörper, Rotationskörper
4D Tesserakt, Hypersphäre


Anzeige


Trapez - Rechner

Berechnungen bei einem Trapez. Ein Trapez ist ein Viereck mit zwei parallelen Seiten.
Geben Sie genau drei Seitenlängen und einen Winkel ein, der an zwei gegebenen Seiten anliegt. Runden Sie bei Bedarf und klicken Sie auf Berechnen. Winkel bitte in Grad angeben, hier kann man Winkel umrechnen. Es können hier nur Trapeze errechnet werden, bei denen c nicht über a hinaus steht (g1, g2 ≥ 0; α, β ≤ 90°), für andere siehe stumpfes Trapez.
Beispiel für ein Trapez: a=4, b=3, c=2.5, β=80°


Carl Friedrich Gauß, von Gottlieb Biermann Längere Grundseite, Basis (a): Trapez
Erster Schenkel (b):
Kürzere Grundseite (c):
Zweiter Schenkel (d):
Erster Winkel (α):
Zweiter Winkel (β):
Dritter Winkel (γ):
Vierter Winkel (δ):
Höhe (h):
Erste Diagonale (e):
Zweite Diagonale (f):
Mittellinie (m):
Erster Überstand (g1):
Zweiter Überstand (g2):
Umfang (u):
Flächeninhalt (A):
Runden auf    Nachkommastellen.



Form des Trapezes:
Formeln:
α + δ = 180°
β + γ = 180°
a = c + g1 + g2
g1 = √ d² - h²
g2 = √ b² - h²
α = arccos( (g1²+d²-h²) / ( 2*g1*d ) )
β = arccos( (g2²+b²-h²) / ( 2*g2*b ) )
h = b * sin(β) = b * sin(γ) = d * sin(α) = d * sin(δ)
e = √ a² + b² - 2ab*cos(β)
f = √ a² + d² - 2ad*cos(α)
m = ( a + c ) / 2
u = a + b + c + d
A = ( a + c ) / 2 * h

Seitenlängen, Höhe, Diagonalen und Umfang haben die gleiche Einheit (beispielsweise Meter), der Flächeninhalt hat diese Einheit zum Quadrat (beispielsweise Quadratmeter).


Anzeige


Trapez, Umfang und Flächeninhalt
Umfang u, Flächeninhalt A
Trapez, Seiten und Winkel
Seiten und Winkel

Trapez, Höhe
Höhe
Trapez, Diagonalen
Diagonalen

Trapez, Mittellinie
Mittellinie

Eine Sonderform des Trapezes ist das Parallelogramm, bei dem nicht nur ein Paar, sondern beide Paare gegenüberliegender Seiten zueinander parallel sind. Ein weiterer Spezialfall ist das stumpfes Trapez, welches der Rechner auf dieser Seite nicht berechnen kann (wohl aber auf der verlinkten Seite). Dazu gibt es noch rechtwinkliges Trapez, gleichschenkliges Trapez und dreigleichseitiges Trapez. Auch das Rechteck, die Raute und das Quadrat sind schließlich Trapeze.
In alten Schriften zur Beginn des 20. Jahrhunderts und davor benutzte man den Begriff Trapez im Allgemeinen für allgemeine Vierecke oder speziell solche ohne parallele Seiten. Trapeze im modernen Sinne wurden als Paralleltrapeze bezeichnet. Das kann heutzutage verwirren, wenn man solche Schriften liest. Der Name der dreidimensionalen Form Trapezoeder geht noch auf die alte Bedeutung des Wortes Trapez zurück. In der Architektur wird Trapez als Begriff für viereckige Türen, Fenster und Gebäude verwendet, die unten breiter als oben sind und gleichschenklige Trapeze darstellen.
Das allgemeine Trapez hat keine Symmetrien, ein gleichschenkliges Trapez hat eine Symmetrieachse durch die Mitte der beiden parallelen Seiten.



Glossar | Alle Angaben ohne Gewähr | © Jumk.de Webprojekte | Rechneronline





Anzeige



Anzeige



↑ hoch