1D
Gerade , Kreisbogen , Parabel , Helix , Koch-Kurve
2D
Regelmäßige Polygone: Gleichseitiges Dreieck , Quadrat , Fünfeck , Sechseck , Siebeneck , Achteck , Neuneck , Zehneck , Elfeck , Zwölfeck , Sechzehneck , Vieleck , Vieleckring
Andere Polygone: Dreieck , Rechtwinkliges Dreieck , Gleichschenkliges Dreieck , GR Dreieck , Viereck , Rechteck , Goldenes Rechteck , Raute , Parallelogramm , Halbquadrat-Deltoid , Rechtwinkliges Deltoid , Drachenviereck , Rechtwinkliges Trapez , Gleichschenkliges Trapez , Dreigleichseitiges Trapez , Trapez , Stumpfes Trapez , Sehnenviereck , Tangentenviereck , Pfeilviereck , Konkaves Viereck , Überschlagenes Rechteck , Antiparallelogramm , Hausform , Symmetrisches Fünfeck , Diagonal halbiertes Achteck , Abgeschnittenes Rechteck , Konkaves Fünfeck , Konkaves regelmäßiges Fünfeck , Verlängertes Fünfeck , Gerade halbiertes Achteck , Verlängertes Sechseck , Symmetrisches Sechseck , Parallelogon , Konkaves Sechseck , Pfeilsechseck , Rechteckiges Sechseck , L-Form , Knick , T-Form , Quadrat-Siebeneck , Abgestumpftes Quadrat , Verlängertes Achteck , Rahmen , Offener Rahmen , Gitter , Kreuz , X-Form , H-Form , Dreistern , Vierstern , Pentagramm , Hexagramm , Unikursales Hexagramm , Oktagramm , Stern von Lakshmi , Doppelter Stern , Vielzackiger Stern , Polygon
Runde Formen: Kreis , Halbkreis , Kreissektor , Kreissegment , Kreisschicht , Kreismittelsegment , Runde Ecke , Kreisecke , Kreistangentenpfeil , Tropfenform , Sichel , Spitzes Oval , Zwei Kreise , Spitzbogen , Kreisring , Kreisringsektor , Gekrümmtes Rechteck , Abgerundetes Vieleck , Abgerundetes Rechteck , Ellipse , Halbellipse , Ellipsensegment , Ellipsensektor Elliptischer Ring , Stadion , Spirale , Log. Spirale , Reuleaux-Dreieck , Zykloide , Doppelzykloide , Astroide , Hypozykloide , Kardioide , Epizykloide , Parabelsegment , Herz , Dreispitz , Kuppe , Zwischenbogendreieck , Kreisbogendreieck , Zwischenbogenviereck , Zwischenkreisviereck , Kreisbogenviereck , Kreisbogenvieleck , Kralle , Yin-Yang-Hälfte , Arbelos , Salinon , Beule , Möndchen , Drei Kreise , Vielkreis , Rundseitiges Vieleck , Rosette , Zahnrad , Oval , Ei-Umriss , Lemniskate , Superkreis , Kreisquadrat , Zweieck , Kugeldreieck
3D
Platonische Körper: Tetraeder , Würfel , Oktaeder , Dodekaeder , Ikosaeder
Archimedische Körper: Tetraederstumpf , Kuboktaeder , Hexaederstumpf , Oktaederstumpf , Rhombenkuboktaeder , Kuboktaederstumpf , Ikosidodekaeder , Dodekaederstumpf , Ikosaederstumpf , Abgeschrägtes Hexaeder , Rhombenikosidodekaeder , Ikosidodekaederstumpf , Abgeschrägtes Dodekaeder
Catalanische Körper: Triakistetraeder , Rhombendodekaeder , Triakisoktaeder , Tetrakishexaeder , Deltoidalikositetraeder , Hexakisoktaeder , Rhombentriakontaeder , Triakisikosaeder , Pentakisdodekaeder , Pentagonikositetraeder , Deltoidalhexakontaeder , Hexakisikosaeder , Pentagonhexakontaeder
Johnson-Körper: Pyramiden , Kuppeln , Rotunde , Verlängerte Pyramiden , Verdreht verlängerte Pyramiden , Bipyramiden , Verlängerte Bipyramiden , Verdreht verl. Quadratbipyramide , Verdrehter Doppelkeil , Disheptaeder , Trigondodekaeder , Sphenocorona , Disphenocingulum
Andere Polyeder: Quader , Quadratische Säule , Dreieckspyramide , Quadratische Pyramide , Regelmäßige Pyramide , Pyramide , Quadr. Pyramidenstumpf , Reg. Pyramidenstumpf , Pyramidenstumpf , Knickpyramide , Regelmäßige Doppelpyramide , Doppelpyramide , Bifrustum , Frustum-Pyramide , Rampe , Gerader Keil , Keil , Halbes Tetraeder , Rhomboeder , Parallelepiped , Regelmäßiges Prisma , Prisma , Schiefes Prisma , Antiwürfel , Antiprisma , Prismatoid , Trapezoeder , Disphenoid , Ecke , Allgemeiner Tetraeder , Keilquader , Halber Quader , Abgeschrägter Quader , Barren , Abgeschrägtes Dreikantprisma , Abgeschnittener Quader , Abgestumpfter Quader , Stumpfkantiger Quader , Verlängertes Rhombendodekaeder , Rhomboederstumpf , Obelisk , Geknickter Quader , Hohlquader , Hohlpyramide , Hohlfrustum , Sternpyramide , Sterntetraeder , Dodekaederstern , Ikosaederstern , Großes Dodekaeder , Großes Ikosaeder
Runde Formen: Kugel , Halbkugel , Kugelecke , Zylinder , Zylinderabschnitt , Schräger Zylinder , Geknickter Zylinder , Elliptischer Zylinder , Allgemeiner Zylinder , Kegel , Kegelstumpf , Schiefer Kreiskegel , Ellipsenkegel , Elliptischer Kegelstumpf , Allgemeiner Kegel , Allgemeiner Kegelstumpf , Doppelkegel , Doppelkegelstumpf , Spitze Säule , Abgerundeter Kegel , Tropfen , Sphäroid , Ellipsoid , Halbellipsoid , Kugelsektor , Kugelsegment , Kugelschicht , Kugelmittelsegment , Doppelkalotte , Kugelkeil , Halbzylinder , Diagonal halbierter Zylinder , Zylinderkeil , Zylindersektor , Zylindersegment , Abgeschrägter Zylinder , Halbkegel , Kegelsektor , Kegelkeil , Kugelschale , Halbkugelschale , Hohlzylinder , Hohlzylinderabschnitt , Schräger Hohlzylinder , Hohlkegel , Hohlkegelstumpf , Kugelring , Torus , Spindeltorus , Toroid , Torussektor , Toroidsektor , Bogen , Reuleaux-Tetraeder , Kapsel , Kapselsegment , Doppelspitz , Antikegel , Antikegelstumpf , Kugelzylinder , Linse , Konkave Linse , Fass , Ei-Form , Paraboloid , Hyperboloid , Oloid , Steinmetzkörper , Rotationskörper
4D
Tesserakt , Hypersphäre
Anzeige
Drachenviereck - Rechner
Berechnungen bei einem Drachenviereck (Deltoid). Ein Drachenviereck ist ein Viereck mit zwei benachbarten Paaren gleich langer Seiten, bzw. ein Viereck, bei dem eine Diagonale auch Symmetrieachse ist. Geben Sie die Längen beider Diagonalen ein, sowie den Abstand der Punkte A und E, runden Sie bei Bedarf und klicken Sie auf Berechnen. Die Ausgabe der Winkel erfolgt in Grad, hier kann man Winkel umrechnen .
Formeln:
a = √ (f/2)² + c²
b = √ (f/2)² + (e-c)²
u = 2 * ( a + b )
A = ef / 2
rI = 2A / u
α = arccos( (c²+a²-(f/2)²) / ( 2*c*a ) )
γ = arccos( ((e-c)²+b²-(f/2)²) / ( 2*(e-c)*b ) )
β = ( 360° - α - γ) / 2
Seitenlänge, Diagonale, Umfang und Inkreisradius haben die gleiche Einheit (beispielsweise Meter), der Flächeninhalt hat diese Einheit zum Quadrat (beispielsweise Quadratmeter).
Anzeige
Das Drachenviereck ist achsensymmetrisch zur Symmetriediagonalen. Wenn das halbe Drachenviereck am Winkel gegenüber der teilenden Symmetrieachse einen rechten Winkel hat, nur dann hat es einen Umkreis. Dessen Mittelpunkt liegt in der Mitte der Symmetrieachse.
Umfang u, Flächeninhalt A Seiten und Winkel
Diagonalen Winkelhalbierende und Inkreis
Umkreis
Glossar | Alle Angaben ohne Gewähr | ©
Jumk.de Webprojekte |
Rechneronline
Anzeige