Geometrie | Formen | Glossar | Impressum & Datenschutz Geometrierechner English: Geometric Calculators, Forms

1D Gerade, Kreisbogen, Parabel, Helix, Koch-Kurve
2D Regelmäßige Polygone:
Gleichseitiges Dreieck, Quadrat, Fünfeck, Sechseck, Siebeneck, Achteck, Neuneck, Zehneck, Elfeck, Zwölfeck, Sechzehneck, Vieleck, Vieleckring

Andere Polygone:
Dreieck, Rechtwinkliges Dreieck, Gleichschenkliges Dreieck, GR Dreieck, 1/2 GS Dreieck, Goldenes Dreieck, Viereck, Rechteck, Goldenes Rechteck, Raute, Parallelogramm, Drachenviereck, 60-90-120-Deltoid, Halbquadrat-Deltoid, Rechtwinkliges Deltoid, Trapez, Rechtwinkliges Trapez, Gleichschenkliges Trapez, Dreigleichseitiges Trapez, Stumpfes Trapez, Sehnenviereck, Tangentenviereck, Pfeilviereck, Konkaves Viereck, Überschlagenes Rechteck, Antiparallelogramm, Hausform, Symmetrisches Fünfeck, Diagonal halbiertes Achteck, Abgeschnittenes Rechteck, Konkaves Fünfeck, Konkaves regelmäßiges Fünfeck, Verlängertes Fünfeck, Gerade halbiertes Achteck, Verlängertes Sechseck, Symmetrisches Sechseck, Halbregelmäßiges Sechseck, Parallelogon, Konkaves Sechseck, Pfeilsechseck, Rechteckiges Sechseck, L-Form, Knick, T-Form, Quadrat-Siebeneck, Abgestumpftes Quadrat, Verlängertes Achteck, Rahmen, Offener Rahmen, Gitter, Kreuz, X-Form, H-Form, Dreistern, Vierstern, Pentagramm, Hexagramm, Unikursales Hexagramm, Oktagramm, Stern von Lakshmi, Doppelter Stern, Vielzackiger Stern, The Hat, Polygon

Runde Formen:
Kreis, Halbkreis, Kreissektor, Kreissegment, Kreisschicht, Kreismittelsegment, Runde Ecke, Kreisecke, Kreistangentenpfeil, Tropfenform, Sichel, Spitzes Oval, Zwei Kreise, Spitzbogen, Kreisring, Halbkreisring, Kreisringsektor, Kreisringsegment, Käsch, Gekrümmtes Rechteck, Abgerundetes Vieleck, Abgerundetes Rechteck, Ellipse, Halbellipse, Ellipsensegment, Ellipsensektor Elliptischer Ring, Stadion, Stadionsegment, Spirale, Log. Spirale, Reuleaux-Dreieck, Zykloide, Doppelzykloide, Astroide, Hypozykloide, Kardioide, Epizykloide, Parabelsegment, Herz, Dreispitz, Halbkreisspitz, Kuppe, Verlängerter Halbkreis, Zwischenbogendreieck, Kreisbogendreieck, Zwischenbogenviereck, Zwischenkreisviereck, Kreisbogenviereck, Kreisbogenvieleck, Kralle, Yin-Yang-Hälfte, Arbelos, Salinon, Beule, Möndchen, Drei Kreise, Vielkreis, Rundseitiges Vieleck, Rosette, Zahnrad, Oval, Ei-Umriss, Lemniskate, Superkreis, Kreisquadrat, Zweieck, Kugeldreieck
3D Platonische Körper:
Tetraeder, Würfel, Oktaeder, Dodekaeder, Ikosaeder

Archimedische Körper:
Tetraederstumpf, Kuboktaeder, Hexaederstumpf, Oktaederstumpf, Rhombenkuboktaeder, Kuboktaederstumpf, Ikosidodekaeder, Dodekaederstumpf, Ikosaederstumpf, Abgeschrägtes Hexaeder, Rhombenikosidodekaeder, Ikosidodekaederstumpf, Abgeschrägtes Dodekaeder

Catalanische Körper:
Triakistetraeder, Rhombendodekaeder, Triakisoktaeder, Tetrakishexaeder, Deltoidalikositetraeder, Hexakisoktaeder, Rhombentriakontaeder, Triakisikosaeder, Pentakisdodekaeder, Pentagonikositetraeder, Deltoidalhexakontaeder, Hexakisikosaeder, Pentagonhexakontaeder

Johnson-Körper:
Pyramiden, Kuppeln, Rotunde, Verlängerte Pyramiden, Verdreht verlängerte Pyramiden, Bipyramiden, Verlängerte Bipyramiden, Verdreht verl. Quadratbipyramide, Verdrehter Doppelkeil, Disheptaeder, Trigondodekaeder, Sphenocorona, Disphenocingulum

Andere Polyeder:
Quader, Quadratische Säule, Dreieckspyramide, Quadratische Pyramide, Regelmäßige Pyramide, Pyramide, Quadr. Pyramidenstumpf, Reg. Pyramidenstumpf, Pyramidenstumpf, Knickpyramide, Regelmäßige Doppelpyramide, Doppelpyramide, Bifrustum, Frustum-Pyramide, Rampe, Gerader Keil, Keil, Halbes Tetraeder, Rhomboeder, Parallelepiped, Regelmäßiges Prisma, Prisma, Schiefes Prisma, Antiwürfel, Antiprisma, Prismatoid, Trapezoeder, Disphenoid, Ecke, Allgemeiner Tetraeder, Keilquader, Halber Quader, Abgeschrägter Quader, Barren, Abgeschrägtes Dreikantprisma, Abgeschnittener Quader, Abgestumpfter Quader, Stumpfkantiger Quader, Verlängertes Rhombendodekaeder, Rhomboederstumpf, Obelisk, Geknickter Quader, Hohlquader, Hohlpyramide, Hohlfrustum, Sternpyramide, Sterntetraeder, Dodekaederstern, Ikosaederstern, Großes Dodekaeder, Großes Ikosaeder

Runde Formen:
Kugel, Halbkugel, Viertelkugel, Kugelecke, Zylinder, Zylinderabschnitt, Schräger Zylinder, Geknickter Zylinder, Elliptischer Zylinder, Allgemeiner Zylinder, Kegel, Kegelstumpf, Schiefer Kreiskegel, Ellipsenkegel, Elliptischer Kegelstumpf, Allgemeiner Kegel, Allgemeiner Kegelstumpf, Doppelkegel, Doppelkegelstumpf, Spitze Säule, Abgerundeter Kegel, Verlängerte Halbkugel, Tropfen, Sphäroid, Ellipsoid, Halbellipsoid, Kugelsektor, Kugelsegment, Kugelschicht, Kugelmittelsegment, Doppelkalotte, Abgerundete Scheibe, Doppelkugel, Kugelkeil, Halbzylinder, Diagonal halbierter Zylinder, Zylinderkeil, Zylindersektor, Zylindersegment, Abgeschrägter Zylinder, Halbkegel, Kegelsektor, Kegelkeil, Kugelschale, Halbkugelschale, Kugelschalensegment, Hohlzylinder, Hohlzylinderabschnitt, Schräger Hohlzylinder, Hohlkegel, Hohlkegelstumpf, Kugelring, Torus, Spindeltorus, Toroid, Torussektor, Toroidsektor, Bogen, Reuleaux-Tetraeder, Kapsel, Halbkapsel, Kapselsegment, Doppelspitz, Antikegel, Antikegelstumpf, Kugelzylinder, Linse, Konkave Linse, Fass, Ei-Form, Paraboloid, Hyperboloid, Oloid, Steinmetzkörper, Rotationskörper
4D Tesserakt, Hypersphäre


Anzeige


Polygon - Rechner

Berechnungen bei einem einfachen Polygon. Ein Polygon oder Vieleck besteht aus geraden Kanten und mindestens drei Ecken. Einfach ist das Polygon, wenn sich die Kanten nicht schneiden, das Polygon also nicht überschlagen ist. Hier können aus den kartesischen Koordinaten der Eckpunkte die Seitenlängen sowie Umfang und Flächeninhalt des Polygons berechnet werden.
Geben Sie dazu zunächst die Anzahl der Eckpunkt (3 bis 30) an und danach die x- und die y-Koordinate zu jedem Eckpunkt. Runden Sie bei Bedarf und klicken Sie auf Berechnen. Die Seite 1 geht von Punkt 1 zu Punkt 2, die Seite 2 von Punkt 2 zu 3, ..., die letzte Seite geht von Punkt n zu 1.


Carl Friedrich Gauß, von Gottlieb Biermann Ecken (n): Einfaches Polygon
Ein einfaches Polygon mit 14 Ecken.
Ecke  1: x= y=
Ecke  2: x= y=
Ecke  3: x= y=
Ecke  4: x= y=
Ecke  5: x= y=
Runden auf    Nachkommastellen.

 

Seite 1:
Seite 2:
Seite 3:
Seite 4:
Seite 5:
Umfang (u):
Flächeninhalt (A):

Form des Polygons. Wenn dieses Polygon als überschlagen gezeichnet wird, dann stimmt obige Flächenberechnung nicht:
Formeln:
Länge der Seite i = √ ( xi+1 - xi )² + ( yi+1 - yi
  n
u = Σ ( xi+1 - xi )² + ( yi+1 - yi
 i=1
  n
A = |   Σ xi * yi+1 - yi * xi+1 | / 2
 i=1
mit xn+1 → x1 und yn+1 → y1

Σ ist das Summenzeichen, | | ist die Betragsfunktion.

x- und y-Koordinate geben die Lage eines Punktes rechts und oberhalb vom Nullpunkt im kartesischen Koordinatensystem wieder. Längen und Umfang haben eine eindimensionale Einheit (beispielsweise Meter) der Flächeninhalt hat diese Einheit zum Quadrat (beispielsweise Quadratmeter).

Die Berechnung des einfachen Polygons erfolgt mit der Gaußschen Trapezformel, welche von Carl Friedrich Gauss and Carl Gustav Jacob Jacobi im 19. Jahrhundert gefunden wurde. Diese Formel ordnet jeder Kante des Polygons ein Trapez zu. Diese Trapeze haben positive oder negative Flächen, je nachdem ob sie innerhalb des Polygons oder außerhalb liegen. Schließlich werden alle diese Flächen addiert, um den Flächeninhalt des einfachen Polygons zu erhalten. Die Berechnung des Umfangs erfolgt ähnlich, nur mit den Kantenlängen statt mit den Flächen.
Die Eingabe ist umständlich, dafür lassen sich beliebige Polygone hiermit berechnen. Für Polygone mit einer bestimmten Form, für die es eigene Formeln und Rechner gibt, insbesondere für Dreiecke und Vierecke, sind diese auf jeden Fall zu bevorzugen.



Glossar | Alle Angaben ohne Gewähr | © Jumk.de Webprojekte | Rechneronline





Anzeige



Anzeige



↑ hoch