1D Line
2D
Regular Polygons: Equilateral Triangle , Square , Pentagon , Hexagon , Heptagon , Octagon , Nonagon , Decagon , Hendecagon , Dodecagon , Hexadecagon , N-gon , Polygon Ring
Other Polygons: Triangle , Right Triangle , Isosceles Triangle , IR Triangle , Quadrilateral , Rectangle , Golden Rectangle , Rhombus , Parallelogram , Half Square Kite , Right Kite , Kite , Right Trapezoid , Isosceles Trapezoid , Tri-equilateral Trapezoid , Trapezoid , Cyclic Quadrilateral , Tangential Quadrilateral , Arrowhead , Concave Quadrilateral , Crossed Rectangle , Antiparallelogram , House-Shape , Symmetric Pentagon , Cut Rectangle , Concave Pentagon , Concave Regular Pentagon , Parallelogon , Stretched Hexagon , Concave Hexagon , Arrow-Hexagon , Rectangular Hexagon , L-Shape , Sharp Kink , T-Shape , Truncated Square , Frame , Open Frame , Grid , Cross , X-Shape , H-Shape , Threestar , Fourstar , Pentagram , Hexagram , Unicursal Hexagram , Oktagram , Star of Lakshmi , Double Star Polygon , Polygram , Polygon
Round Forms: Circle , Semicircle , Circular Sector , Circular Segment , Circular Layer , Circular Central Segment , Round Corner , Circular Corner , Circle Tangent Arrow , Drop Shape , Crescent , Pointed Oval , Lancet Arch , Knoll , Annulus , Annulus Sector , Curved Rectangle , Rounded Polygon , Rounded Rectangle , Ellipse , Semi-Ellipse , Elliptical Segment , Elliptical Sector , Elliptical Ring , Stadium , Spiral , Log. Spiral , Reuleaux Triangle , Cycloid , Double Cycloid , Astroid , Hypocycloid , Cardioid , Epicycloid , Parabolic Segment , Heart , Tricorn , Interarc Triangle , Circular Arc Triangle , Interarc Quadrangle , Intercircle Quadrangle , Circular Arc Quadrangle , Circular Arc Polygon , Claw , Half Yin-Yang , Arbelos , Salinon , Bulge , Lune , Three Circles , Polycircle , Round-Edged Polygon , Rose , Gear , Oval , Egg-Profile , Lemniscate , Squircle , Circular Square , Digon , Spherical Triangle
3D
Platonic Solids: Tetrahedron , Cube , Octahedron , Dodecahedron , Icosahedron
Archimedean Solids: Truncated Tetrahedron , Cuboctahedron , Truncated Cube , Truncated Octahedron , Rhombicuboctahedron , Truncated Cuboctahedron , Icosidodecahedron , Truncated Dodecahedron , Truncated Icosahedron , Snub Cube , Rhombicosidodecahedron , Truncated Icosidodecahedron , Snub Dodecahedron
Catalan Solids: Triakis Tetrahedron , Rhombic Dodecahedron , Triakis Octahedron , Tetrakis Hexahedron , Deltoidal Icositetrahedron , Hexakis Octahedron , Rhombic Triacontahedron , Triakis Icosahedron , Pentakis Dodecahedron , Pentagonal Icositetrahedron , Deltoidal Hexecontahedron , Hexakis Icosahedron , Pentagonal Hexecontahedron
Johnson Solids: Pyramids , Cupolae , Rotunda , Elongated Pyramids , Gyroelongated Pyramids , Bipyramids , Elongated Bipyramids , Gyroelongated Square Dipyramid , Gyrobifastigium , Disheptahedron , Snub Disphenoid , Sphenocorona , Disphenocingulum
Other Polyhedrons: Cuboid , Square Pillar , Triangular Pyramid , Square Pyramid , Regular Pyramid , Pyramid , Regular Frustum , Frustum , Regular Bipyramid , Bipyramid , Bifrustum , Frustum-Pyramid , Ramp , Right Wedge , Wedge , Half Tetrahedron , Rhombohedron , Parallelepiped , Regular Prism , Prism , Oblique Prism , Anticube , Antiprism , Prismatoid , Trapezohedron , Disphenoid , Corner , General Tetrahedron , Wedge-Cuboid , Half Cuboid , Skewed Cuboid , Ingot , Skewed Three-Edged Prism , Cut Cuboid , Truncated Cuboid , Obtuse Edged Cuboid , Elongated Dodecahedron , Truncated Rhombohedron , Obelisk , Bent Cuboid , Hollow Cuboid , Hollow Pyramid , Hollow Frustum , Star Pyramid , Stellated Octahedron , Small Stellated Dodecahedron , Great Stellated Dodecahedron , Great Dodecahedron , Great Icosahedron
Round Forms: Sphere , Hemisphere , Spherical Corner , Cylinder , Cut Cylinder , Oblique Cylinder , Bent Cylinder , Elliptic Cylinder , Generalized Cylinder , Cone , Truncated Cone , Oblique Circular Cone , Elliptic Cone , Bicone , Truncated Bicone , Pointed Pillar , Rounded Cone , Drop , Spheroid , Ellipsoid , Semi-Ellipsoid , Spherical Sector , Spherical Cap , Spherical Segment , Spherical Central Segment , Double Calotte , Spherical Wedge , Half Cylinder , Diagonally Halved Cylinder , Cylindrical Wedge , Cylindrical Sector , Cylindrical Segment , Flat End Cylinder , Half Cone , Conical Sector , Conical Wedge , Spherical Shell , Half Spherical Shell , Cylindrical Shell , Cut Cylindrical Shell , Oblique Cylindrical Shell , Hollow Cone , Truncated Hollow Cone , Spherical Ring , Torus , Spindle Torus , Toroid , Torus Sector , Toroid Sector , Arch , Reuleaux-Tetrahedron , Capsule , Capsule Segment , Double Point , Anticone , Truncated Anticone , Sphere-Cylinder , Lens , Concave Lens , Barrel , Egg Shape , Paraboloid , Hyperboloid , Oloid , Steinmetz Solids , Solid of Revolution
4D
Tesseract , Hypersphere
Anzeige

Triangle Calculator
Calculations at a general triangle. Every polygon can be made of triangles. Enter exactly three values, including at least one side length. When entering three sides, any two sides together must be longer than the third. Please enter angles in degrees, here you can convert angle units .

Triangle shape (longest side at the bottom):

Formulas:
SSS: Law of cosines
α = arccos( (b² + c² - a²) / 2bc )
β = arccos( (a² + c² - b²) / 2ac )
γ = arccos( (a² + b² - c²) / 2ab )
SAS:
a = √b² + c² - 2bc * cos( α )
b = √a² + c² - 2ac * cos( β )
c = √a² + b² - 2ab * cos( γ )
SSA: Law of sines
a / sin( α ) = b / sin( β ) = c / sin( γ )unique, if the known angular is opposite to the larger of the two given sides, otherwise there are two solutions.
ASA and AAS:
Third angle = 180° - other two angles, then law of sines
p = a + b + c
A = √p/2 * (p/2-a) * (p/2-b) * (p/2-c)
h_{a} = c * sin( β )
h_{b} = a * sin( γ )
h_{c} = b * sin( α )
r_{c} = a / (2 * sin( α ))
r_{i} = 4r * sin( α/2 ) * sin( β/2 ) * sin( γ/2 )
m_{a} = √2 * ( b² + c² ) - a² / 2
m_{b} = √2 * ( c² + a² ) - b² / 2
m_{c} = √2 * ( a² + b² ) - c² / 2

Side length, perimeter, radius and heights have the same unit (e.g. meter), the area has this unit squared (e.g. square meter), the angles are in degrees.

Anzeige

The centroid is at the intersection of the median lines, the center of the circumcircle is at the intersection of the perpendicular bisectors, the center of the incircle is at the intersection of the bisecting lines.

perimeter p, area A sides and angles heights

median lines and centroid perpendicular bisectors and circumcircle bisecting lines and incircle

Share:

©

Jumk.de Webprojects
Anzeige