1D Line
2D
Regular Polygons: Equilateral Triangle , Square , Pentagon , Hexagon , Heptagon , Octagon , Nonagon , Decagon , Hendecagon , Dodecagon , Hexadecagon , N-gon , Polygon Ring
Other Polygons: Triangle , Right Triangle , Isosceles Triangle , IR Triangle , Quadrilateral , Rectangle , Rhombus , Parallelogram , Right Kite , Kite , Right Trapezoid , Isosceles Trapezoid , Trapezoid , Cyclic Quadrilateral , Tangential Quadrilateral , Arrowhead , Concave Quadrilateral , Antiparallelogram , House-Shape , Symmetric Pentagon , Concave Pentagon , Parallelogon , Arrow-Hexagon , Sharp Kink , Frame , Threestar , Fourstar , Pentagram , Hexagram , Unicursal Hexagram , Cross , Oktagram , Star of Lakshmi , Polygon
Round Forms: Circle , Semicircle , Circular Sector , Circular Segment , Circular Layer , Round Corner , Circular Corner , Pointed Oval , Annulus , Annulus Sector , Curved Rectangle , Ellipse , Semi-Ellipse , Elliptical Segment , Elliptical Sector , Stadium , Digon , Spherical Triangle , Spiral , Log. Spiral , Reuleaux Triangle , Cycloid , Astroid , Hypocycloid , Cardioid , Epicycloid , Parabolic Segment , Arbelos , Salinon , Lune , Three Circles , Polycircle , Oval , Lemniscate , Squircle
3D
Platonic Solids: Tetrahedron , Cube , Octahedron , Dodecahedron , Icosahedron
Archimedean Solids: Truncated Tetrahedron , Cuboctahedron , Truncated Cube , Truncated Octahedron , Rhombicuboctahedron , Truncated Cuboctahedron , Icosidodecahedron , Truncated Dodecahedron , Truncated Icosahedron , Snub Cube , Rhombicosidodecahedron
Catalan Solids: Triakis Tetrahedron , Rhombic Dodecahedron , Triakis Octahedron , Tetrakis Hexahedron , Deltoidal Icositetrahedron , Hexakis Octahedron , Rhombic Triacontahedron , Triakis Icosahedron , Pentakis Dodecahedron , Pentagonal Icositetrahedron , Deltoidal Hexecontahedron
Johnson Solids: Pyramids , Cupolae , Rotunda , Elongated Pyramids , Snub Disphenoid
Other Polyhedrons: Cuboid , Square Pillar , Triangular Pyramid , Square Pyramid , Regular Pyramid , Pyramid , Regular Frustum , Frustum , Bipyramid , Bifrustum , Ramp , Right Wedge , Wedge , Rhombohedron , Parallelepiped , Prism , Oblique Prism , Antiprism , Prismatoid , Trapezohedron , Disphenoid , Corner , General Tetrahedron , Wedge-Cuboid , Half Cuboid , Skewed Cuboid , Skewed Three-Edged Prism , Truncated Rhombohedron , Hollow Cuboid , Hollow Pyramid , Stellated Octahedron , Small Stellated Dodecahedron , Great Stellated Dodecahedron
Round Forms: Sphere , Hemisphere , Cylinder , Cut Cylinder , Oblique Cylinder , Generalized Cylinder , Cone , Truncated Cone , Oblique Circular Cone , Elliptic Cone , Bicone , Spheroid , Ellipsoid , Semi-Ellipsoid , Spherical Sector , Spherical Cap , Spherical Segment , Spherical Wedge , Cylindrical Wedge , Cylindrical Sector , Cylindrical Segment , Flat End Cylinder , Spherical Shell , Cylindrical Shell , Hollow Cone , Truncated Hollow Cone , Spherical Ring , Torus , Spindle Torus , Arch , Reuleaux-Tetrahedron , Capsule , Lens , Barrel , Egg Shape , Paraboloid , Hyperboloid , Oloid , Steinmetz Solids
4D
Tesseract , Hypersphere
Anzeige

Triangle Calculator
Calculations in a general triangle. Every polygon can be made of triangles. Enter exactly three values, including at least one side length. When entering three sides, any two sides together must be longer than the third. Please enter angles in degrees, here you can convert angle units .

Triangle shape (longest side at the bottom):

Formulas:
SSS: Law of cosines
α = arccos( (b² + c² - a²) / 2bc )
β = arccos( (a² + c² - b²) / 2ac )
γ = arccos( (a² + b² - c²) / 2ab )
SAS:
a = √b² + c² - 2bc * cos( α )
b = √a² + c² - 2ac * cos( β )
c = √a² + b² - 2ab * cos( γ )
SSA: Law of sines
a / sin( α ) = b / sin( β ) = c / sin( γ )unique, if the known angular is opposite to the larger of the two given sides, otherwise there are two solutions.
ASA and AAS:
Third angle = 180° - other two angles, then law of sines
p = a + b + c
A = √p/2 * (p/2-a) * (p/2-b) * (p/2-c)
h_{a} = c * sin( β )
h_{b} = a * sin( γ )
h_{c} = b * sin( α )
r_{c} = a / (2 * sin( α/2 ))
r_{i} = 4r * sin( α/2 ) * sin( β/2 ) * sin( γ/2 )
m_{a} = √2 * ( b² + c² ) - a² / 2
m_{b} = √2 * ( c² + a² ) - b² / 2
m_{c} = √2 * ( a² + b² ) - c² / 2

Side length, perimeter, radius and heights have the same unit (e.g. meter), the area has this unit squared (e.g. square meter), the angles are in degrees.

Anzeige

The centroid is at the intersection of the median lines, the center of the circumcircle is at the intersection of the perpendicular bisectors, the center of the incircle is at the intersection of the bisecting lines.

perimeter p, area A sides and angles heights

median lines and centroid perpendicular bisectors and circumcircle bisecting lines and incircle

Anzeige

Share:

©

Jumk.de Webprojects
Anzeige