1D Line
2D
Regular Polygons: Equilateral Triangle , Square , Pentagon , Hexagon , Heptagon , Octagon , Nonagon , Decagon , Hendecagon , Dodecagon , Hexadecagon , N-gon , Polygon Ring
Other Polygons: Triangle , Right Triangle , Isosceles Triangle , IR Triangle , Quadrilateral , Rectangle , Rhombus , Parallelogram , Half Square Kite , Right Kite , Kite , Right Trapezoid , Isosceles Trapezoid , Trapezoid , Cyclic Quadrilateral , Tangential Quadrilateral , Arrowhead , Concave Quadrilateral , Antiparallelogram , House-Shape , Symmetric Pentagon , Concave Pentagon , Parallelogon , Arrow-Hexagon , Sharp Kink , Frame , Threestar , Fourstar , Pentagram , Hexagram , Unicursal Hexagram , Cross , Oktagram , Star of Lakshmi , Polygon
Round Forms: Circle , Semicircle , Circular Sector , Circular Segment , Circular Layer , Round Corner , Circular Corner , Crescent , Pointed Oval , Annulus , Annulus Sector , Curved Rectangle , Ellipse , Semi-Ellipse , Elliptical Segment , Elliptical Sector , Stadium , Digon , Spherical Triangle , Spiral , Log. Spiral , Reuleaux Triangle , Cycloid , Astroid , Hypocycloid , Cardioid , Epicycloid , Parabolic Segment , Arbelos , Salinon , Lune , Three Circles , Polycircle , Oval , Lemniscate , Squircle
3D
Platonic Solids: Tetrahedron , Cube , Octahedron , Dodecahedron , Icosahedron
Archimedean Solids: Truncated Tetrahedron , Cuboctahedron , Truncated Cube , Truncated Octahedron , Rhombicuboctahedron , Truncated Cuboctahedron , Icosidodecahedron , Truncated Dodecahedron , Truncated Icosahedron , Snub Cube , Rhombicosidodecahedron , Truncated Icosidodecahedron , Snub Dodecahedron
Catalan Solids: Triakis Tetrahedron , Rhombic Dodecahedron , Triakis Octahedron , Tetrakis Hexahedron , Deltoidal Icositetrahedron , Hexakis Octahedron , Rhombic Triacontahedron , Triakis Icosahedron , Pentakis Dodecahedron , Pentagonal Icositetrahedron , Deltoidal Hexecontahedron , Hexakis Icosahedron , Pentagonal Hexecontahedron
Johnson Solids: Pyramids , Cupolae , Rotunda , Elongated Pyramids , Disheptahedron , Snub Disphenoid , Sphenocorona
Other Polyhedrons: Cuboid , Square Pillar , Triangular Pyramid , Square Pyramid , Regular Pyramid , Pyramid , Regular Frustum , Frustum , Bipyramid , Bifrustum , Ramp , Right Wedge , Wedge , Rhombohedron , Parallelepiped , Prism , Oblique Prism , Antiprism , Prismatoid , Trapezohedron , Disphenoid , Corner , General Tetrahedron , Wedge-Cuboid , Half Cuboid , Skewed Cuboid , Skewed Three-Edged Prism , Truncated Rhombohedron , Hollow Cuboid , Hollow Pyramid , Stellated Octahedron , Small Stellated Dodecahedron , Great Stellated Dodecahedron
Round Forms: Sphere , Hemisphere , Cylinder , Cut Cylinder , Oblique Cylinder , Generalized Cylinder , Cone , Truncated Cone , Oblique Circular Cone , Elliptic Cone , Bicone , Spheroid , Ellipsoid , Semi-Ellipsoid , Spherical Sector , Spherical Cap , Spherical Segment , Spherical Wedge , Cylindrical Wedge , Cylindrical Sector , Cylindrical Segment , Flat End Cylinder , Spherical Shell , Cylindrical Shell , Hollow Cone , Truncated Hollow Cone , Spherical Ring , Torus , Spindle Torus , Toroid , Torus Sector , Arch , Reuleaux-Tetrahedron , Capsule , Lens , Barrel , Egg Shape , Paraboloid , Hyperboloid , Oloid , Steinmetz Solids
4D
Tesseract , Hypersphere
Anzeige

Concave Quadrilateral Calculator
Calculations in an acute, concave quadrilateral or quadrangle, a quadrilateral with a reflex angle (above 180°). The other three angles must be acute (below 90°), to make the calculation correct. The calculation is done by fragmenting the concave quadrilateral into triangles , which can be calculated with the according formulas. Enter the first three lengths a, b and c and the two angles between them, β and γ. The inner side c must be shorter than each of the outer sides a and b. Please enter angles in degrees, here you can convert angle units .

Acute, concave quadrilateral shape (a at the bottom). The orientation is different from that in the upper example. If this quadrilateral is drawn

crossed , the upper calculation is not valid:

Formeln:
e = √ a² + b² - 2ab * cos( β )
f = √ b² + c² - 2bc * cos( γ )
β_{1} = arccos( (f² + b² - c²) / 2fb )
β_{2} = β - β_{1}
d = √ a² + f² - 2af * cos( β_{2} )
α = arccos( (a² + d² - f²) / 2ad )
δ = 360° - α - β - γ
p = a + b + c + d
A = √(a+f+d)/2 * ((a+f+d)/2-a) * ((a+f+d)/2-f) * ((a+f+d)/2-d) + √(b+c+f)/2 * ((b+c+f)/2-b) * ((b+c+f)/2-c) * ((b+c+f)/2-f)

Side length, diagonals and perimeter have the same unit (e.g. meter), the area has this unit squared (e.g. square meter), the angles are in degrees.

Anzeige

Share:

©

Jumk.de Webprojects
Anzeige