Geometry | Forms | Contact & Privacy Geometric Calculators German: Geometrierechner, Formen

1DLine, Circular Arc, Parabola, Helix, Koch Curve
2D Regular Polygons:
Equilateral Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, Nonagon, Decagon, Hendecagon, Dodecagon, Hexadecagon, N-gon, Polygon Ring

Other Polygons:
Triangle, Right Triangle, Isosceles Triangle, IR Triangle, 1/2 EL Triangle, Quadrilateral, Rectangle, Golden Rectangle, Rhombus, Parallelogram, Kite, 60-90-120 Kite, Half Square Kite, Right Kite, Trapezoid, Right Trapezoid, Isosceles Trapezoid, Tri-equilateral Trapezoid, Obtuse Trapezoid, Cyclic Quadrilateral, Tangential Quadrilateral, Arrowhead, Concave Quadrilateral, Crossed Rectangle, Antiparallelogram, House-Shape, Symmetric Pentagon, Diagonally Bisected Octagon, Cut Rectangle, Concave Pentagon, Concave Regular Pentagon, Stretched Pentagon, Straight Bisected Octagon, Stretched Hexagon, Symmetric Hexagon, Semi-regular Hexagon, Parallelogon, Concave Hexagon, Arrow-Hexagon, Rectangular Hexagon, L-Shape, Sharp Kink, T-Shape, Square Heptagon, Truncated Square, Stretched Octagon, Frame, Open Frame, Grid, Cross, X-Shape, H-Shape, Threestar, Fourstar, Pentagram, Hexagram, Unicursal Hexagram, Oktagram, Star of Lakshmi, Double Star Polygon, Polygram, The Hat, Polygon

Round Forms:
Circle, Semicircle, Circular Sector, Circular Segment, Circular Layer, Circular Central Segment, Round Corner, Circular Corner, Circle Tangent Arrow, Drop Shape, Crescent, Pointed Oval, Two Circles, Lancet Arch, Knoll, Annulus, Semi-Annulus, Annulus Sector, Annulus Segment, Cash, Curved Rectangle, Rounded Polygon, Rounded Rectangle, Ellipse, Semi-Ellipse, Elliptical Segment, Elliptical Sector, Elliptical Ring, Stadium, Spiral, Log. Spiral, Reuleaux Triangle, Cycloid, Double Cycloid, Astroid, Hypocycloid, Cardioid, Epicycloid, Parabolic Segment, Heart, Tricorn, Pointed Semicircle, Interarc Triangle, Circular Arc Triangle, Interarc Quadrangle, Intercircle Quadrangle, Circular Arc Quadrangle, Circular Arc Polygon, Claw, Half Yin-Yang, Arbelos, Salinon, Bulge, Lune, Three Circles, Polycircle, Round-Edged Polygon, Rose, Gear, Oval, Egg-Profile, Lemniscate, Squircle, Circular Square, Digon, Spherical Triangle
3D Platonic Solids:
Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron

Archimedean Solids:
Truncated Tetrahedron, Cuboctahedron, Truncated Cube, Truncated Octahedron, Rhombicuboctahedron, Truncated Cuboctahedron, Icosidodecahedron, Truncated Dodecahedron, Truncated Icosahedron, Snub Cube, Rhombicosidodecahedron, Truncated Icosidodecahedron, Snub Dodecahedron

Catalan Solids:
Triakis Tetrahedron, Rhombic Dodecahedron, Triakis Octahedron, Tetrakis Hexahedron, Deltoidal Icositetrahedron, Hexakis Octahedron, Rhombic Triacontahedron, Triakis Icosahedron, Pentakis Dodecahedron, Pentagonal Icositetrahedron, Deltoidal Hexecontahedron, Hexakis Icosahedron, Pentagonal Hexecontahedron

Johnson Solids:
Pyramids, Cupolae, Rotunda, Elongated Pyramids, Gyroelongated Pyramids, Bipyramids, Elongated Bipyramids, Gyroelongated Square Dipyramid, Gyrobifastigium, Disheptahedron, Snub Disphenoid, Sphenocorona, Disphenocingulum

Other Polyhedrons:
Cuboid, Square Pillar, Triangular Pyramid, Square Pyramid, Regular Pyramid, Pyramid, Square Frustum, Regular Frustum, Frustum, Bent Pyramid, Regular Bipyramid, Bipyramid, Bifrustum, Frustum-Pyramid, Ramp, Right Wedge, Wedge, Half Tetrahedron, Rhombohedron, Parallelepiped, Regular Prism, Prism, Oblique Prism, Anticube, Antiprism, Prismatoid, Trapezohedron, Disphenoid, Corner, General Tetrahedron, Wedge-Cuboid, Half Cuboid, Skewed Cuboid, Ingot, Skewed Three-Edged Prism, Cut Cuboid, Truncated Cuboid, Obtuse Edged Cuboid, Elongated Dodecahedron, Truncated Rhombohedron, Obelisk, Bent Cuboid, Hollow Cuboid, Hollow Pyramid, Hollow Frustum, Star Pyramid, Stellated Octahedron, Small Stellated Dodecahedron, Great Stellated Dodecahedron, Great Dodecahedron, Great Icosahedron

Round Forms:
Sphere, Hemisphere, Spherical Corner, Cylinder, Cut Cylinder, Oblique Cylinder, Bent Cylinder, Elliptic Cylinder, Generalized Cylinder, Cone, Truncated Cone, Oblique Circular Cone, Elliptic Cone, Truncated Elliptic Cone, General Cone, General Truncated Cone, Bicone, Truncated Bicone, Pointed Pillar, Rounded Cone, Drop, Spheroid, Ellipsoid, Semi-Ellipsoid, Spherical Sector, Spherical Cap, Spherical Segment, Spherical Central Segment, Double Calotte, Double Sphere, Spherical Wedge, Half Cylinder, Diagonally Halved Cylinder, Cylindrical Wedge, Cylindrical Sector, Cylindrical Segment, Flat End Cylinder, Half Cone, Conical Sector, Conical Wedge, Spherical Shell, Half Spherical Shell, Spherical Shell Cap, Cylindrical Shell, Cut Cylindrical Shell, Oblique Cylindrical Shell, Hollow Cone, Truncated Hollow Cone, Spherical Ring, Torus, Spindle Torus, Toroid, Torus Sector, Toroid Sector, Arch, Reuleaux-Tetrahedron, Capsule, Capsule Segment, Double Point, Anticone, Truncated Anticone, Sphere-Cylinder, Lens, Concave Lens, Barrel, Egg Shape, Paraboloid, Hyperboloid, Oloid, Steinmetz Solids, Solid of Revolution
4D Tesseract, Hypersphere


Anzeige


Triakis Tetrahedron Calculator

Calculations at a triakis tetrahedron, the dual body of the truncated tetrahedron. A triakis tetrahedron is a regular tetrahedron with matching regular triangular pyramids attached to its faces. It has four vertices with three edges and four vertices with six edges.
Enter one value and choose the number of decimal places. Then click Calculate.


Eugène Charles Catalan, by Emile Delperée Edge length tetrahedron (a): Triakis Tetrahedron
12 faces, 18 edges, 8 vertices
Faces: isosceles triangles
Edge length pyramid (b):
Height (h):
Surface area (A):
Volume (V):
Midsphere radius (rm):
Insphere radius (ri):
Surface-to-volume ratio (A/V):
Round to    decimal places.



Formulas:
b = 3/5 * a
h = 3/5 * a * √6
A = 3/5 * a² * √11
V = 3/20 * a³ * √2
rm = a/4 * √2
ri = 3/4 * a * √ 2/11
A/V = 4 * √11 / ( a * √2)

The triakis tetrahedron is a Catalan solid. Lengths, height and radiuses have the same unit (e.g. meter), the area has this unit squared (e.g. square meter), the volume has this unit to the power of three (e.g. cubic meter). A/V has this unit -1.

The Catalan solids were discovered in the nineteenth century by Eugène Charles Catalan. They are also called dual-Archimedean solids because they are dual to the Archimedean solids. A dual solid is created when the midpoints of the side faces of a polyhedron are connected to each other when these side faces are connected. Then the previous side faces are removed. In simple terms, the faces are swapped with the vertices and vice versa. The dual solid of the dual solid is again the original polyhedron. The triakis tetrahedron is the first Catalan solid because it has the fewest number of vertices. Since there are thirteen Archimedean solids, there are also this number of Catalan solids. The side faces of the Catalan solids are each identical polyhedra, but they are not perfectly regular. This is in contrast to the Archimedean solids, where the side faces are different but perfectly regular. Catalan solids all have an insphere and a midsphere. The insphere touches all faces, the midsphere touches all edges. They do not have a circumsphere that would touch all vertices.



© Jumk.de Webprojects | Online Calculators





Anzeige



Anzeige



↑ up