Geometry | Forms | Contact & Privacy Geometric Calculators German: Geometrierechner, Formen

1DLine, Circular Arc, Parabola, Helix, Koch Curve
2D Regular Polygons:
Equilateral Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, Nonagon, Decagon, Hendecagon, Dodecagon, Hexadecagon, N-gon, Polygon Ring

Other Polygons:
Triangle, Right Triangle, Isosceles Triangle, IR Triangle, 1/2 EL Triangle, Quadrilateral, Rectangle, Golden Rectangle, Rhombus, Parallelogram, Kite, 60-90-120 Kite, Half Square Kite, Right Kite, Trapezoid, Right Trapezoid, Isosceles Trapezoid, Tri-equilateral Trapezoid, Obtuse Trapezoid, Cyclic Quadrilateral, Tangential Quadrilateral, Arrowhead, Concave Quadrilateral, Crossed Rectangle, Antiparallelogram, House-Shape, Symmetric Pentagon, Diagonally Bisected Octagon, Cut Rectangle, Concave Pentagon, Concave Regular Pentagon, Stretched Pentagon, Straight Bisected Octagon, Stretched Hexagon, Symmetric Hexagon, Semi-regular Hexagon, Parallelogon, Concave Hexagon, Arrow-Hexagon, Rectangular Hexagon, L-Shape, Sharp Kink, T-Shape, Square Heptagon, Truncated Square, Stretched Octagon, Frame, Open Frame, Grid, Cross, X-Shape, H-Shape, Threestar, Fourstar, Pentagram, Hexagram, Unicursal Hexagram, Oktagram, Star of Lakshmi, Double Star Polygon, Polygram, The Hat, Polygon

Round Forms:
Circle, Semicircle, Circular Sector, Circular Segment, Circular Layer, Circular Central Segment, Round Corner, Circular Corner, Circle Tangent Arrow, Drop Shape, Crescent, Pointed Oval, Two Circles, Lancet Arch, Knoll, Annulus, Semi-Annulus, Annulus Sector, Annulus Segment, Cash, Curved Rectangle, Rounded Polygon, Rounded Rectangle, Ellipse, Semi-Ellipse, Elliptical Segment, Elliptical Sector, Elliptical Ring, Stadium, Spiral, Log. Spiral, Reuleaux Triangle, Cycloid, Double Cycloid, Astroid, Hypocycloid, Cardioid, Epicycloid, Parabolic Segment, Heart, Tricorn, Pointed Semicircle, Interarc Triangle, Circular Arc Triangle, Interarc Quadrangle, Intercircle Quadrangle, Circular Arc Quadrangle, Circular Arc Polygon, Claw, Half Yin-Yang, Arbelos, Salinon, Bulge, Lune, Three Circles, Polycircle, Round-Edged Polygon, Rose, Gear, Oval, Egg-Profile, Lemniscate, Squircle, Circular Square, Digon, Spherical Triangle
3D Platonic Solids:
Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron

Archimedean Solids:
Truncated Tetrahedron, Cuboctahedron, Truncated Cube, Truncated Octahedron, Rhombicuboctahedron, Truncated Cuboctahedron, Icosidodecahedron, Truncated Dodecahedron, Truncated Icosahedron, Snub Cube, Rhombicosidodecahedron, Truncated Icosidodecahedron, Snub Dodecahedron

Catalan Solids:
Triakis Tetrahedron, Rhombic Dodecahedron, Triakis Octahedron, Tetrakis Hexahedron, Deltoidal Icositetrahedron, Hexakis Octahedron, Rhombic Triacontahedron, Triakis Icosahedron, Pentakis Dodecahedron, Pentagonal Icositetrahedron, Deltoidal Hexecontahedron, Hexakis Icosahedron, Pentagonal Hexecontahedron

Johnson Solids:
Pyramids, Cupolae, Rotunda, Elongated Pyramids, Gyroelongated Pyramids, Bipyramids, Elongated Bipyramids, Gyroelongated Square Dipyramid, Gyrobifastigium, Disheptahedron, Snub Disphenoid, Sphenocorona, Disphenocingulum

Other Polyhedrons:
Cuboid, Square Pillar, Triangular Pyramid, Square Pyramid, Regular Pyramid, Pyramid, Square Frustum, Regular Frustum, Frustum, Bent Pyramid, Regular Bipyramid, Bipyramid, Bifrustum, Frustum-Pyramid, Ramp, Right Wedge, Wedge, Half Tetrahedron, Rhombohedron, Parallelepiped, Regular Prism, Prism, Oblique Prism, Anticube, Antiprism, Prismatoid, Trapezohedron, Disphenoid, Corner, General Tetrahedron, Wedge-Cuboid, Half Cuboid, Skewed Cuboid, Ingot, Skewed Three-Edged Prism, Cut Cuboid, Truncated Cuboid, Obtuse Edged Cuboid, Elongated Dodecahedron, Truncated Rhombohedron, Obelisk, Bent Cuboid, Hollow Cuboid, Hollow Pyramid, Hollow Frustum, Star Pyramid, Stellated Octahedron, Small Stellated Dodecahedron, Great Stellated Dodecahedron, Great Dodecahedron, Great Icosahedron

Round Forms:
Sphere, Hemisphere, Spherical Corner, Cylinder, Cut Cylinder, Oblique Cylinder, Bent Cylinder, Elliptic Cylinder, Generalized Cylinder, Cone, Truncated Cone, Oblique Circular Cone, Elliptic Cone, Truncated Elliptic Cone, General Cone, General Truncated Cone, Bicone, Truncated Bicone, Pointed Pillar, Rounded Cone, Drop, Spheroid, Ellipsoid, Semi-Ellipsoid, Spherical Sector, Spherical Cap, Spherical Segment, Spherical Central Segment, Double Calotte, Double Sphere, Spherical Wedge, Half Cylinder, Diagonally Halved Cylinder, Cylindrical Wedge, Cylindrical Sector, Cylindrical Segment, Flat End Cylinder, Half Cone, Conical Sector, Conical Wedge, Spherical Shell, Half Spherical Shell, Spherical Shell Cap, Cylindrical Shell, Cut Cylindrical Shell, Oblique Cylindrical Shell, Hollow Cone, Truncated Hollow Cone, Spherical Ring, Torus, Spindle Torus, Toroid, Torus Sector, Toroid Sector, Arch, Reuleaux-Tetrahedron, Capsule, Capsule Segment, Double Point, Anticone, Truncated Anticone, Sphere-Cylinder, Lens, Concave Lens, Barrel, Egg Shape, Paraboloid, Hyperboloid, Oloid, Steinmetz Solids, Solid of Revolution
4D Tesseract, Hypersphere


Anzeige


Ellipsoid Calculator

Calculations at an ellipsoid. An ellipsoid is a round, three-dimensional shape with different semi-axes and diameters; it is to a sphere as an ellipse is to a circle.
Enter the three semi axes and choose the number of decimal places. Then click Calculate. The surface area is calculated with an approximation formula (by Knud Thomsen), the error is 1.061% at most. The exact calculation would be done with elliptic integrals (Jacobi integrals), whose values can be taken from tables.


Jacobi First semi axis (a): Ellipsoid
An ellipsoid
Slice plane: ellipse
Second semi axis (b):
Third semi axis (c):
Surface area (A):
Volume (V):
Surface-to-volume ratio (A/V):
Round to    decimal places.



Formulas:
A ≈ 4π * ( ((a*b)1.6075+(a*c)1.6075+(b*c)1.6075)/3 )1/1.6075
V = 4/3 * π * a * b * c

pi:
π = 3.141592653589793...

The semi axes have the same unit (e.g. meter), the area has this unit squared (e.g. square meter), the volume has this unit to the power of three (e.g. cubic meter). A/V has this unit -1.

If all three semiaxes are different, then it is a triaxial ellipsoid. An ellipsoid in which two of the three semiaxes (the equatorial semiaxes) are the same is a spheroid or ellipsoid of revolution, of which there are two different types: the oblate spheroid with a shorter polar semiaxis and the elongated spheroid with a longer polar semiaxis. In contrast to the ellipsoid, the surface area of ​​spheroids can be calculated algebraically. A spheroid is a mixture of a sphere and an ellipsoid. The oblate spheroid is the simplified form of planets and stars. Two spheroids with the same base but different polar semiaxis make a pretty good egg shape. An ellipsoid divided by an axial plane is a semi-ellipsoid. Any straight section through an ellipsoid always has the shape of an ellipse as long as the section affects more than one point.
The approximate formula for the surface was discovered and published by the Danish geologist Knud Thomsen in 2004.



© Jumk.de Webprojects | Online Calculators





Anzeige



Anzeige



↑ up