1D Line
2D
Regular Polygons: Equilateral Triangle , Square , Pentagon , Hexagon , Heptagon , Octagon , Nonagon , Decagon , Hendecagon , Dodecagon , Hexadecagon , N-gon , Polygon Ring
Other Polygons: Triangle , Right Triangle , Isosceles Triangle , IR Triangle , Quadrilateral , Rectangle , Rhombus , Parallelogram , Half Square Kite , Right Kite , Kite , Right Trapezoid , Isosceles Trapezoid , Trapezoid , Cyclic Quadrilateral , Tangential Quadrilateral , Arrowhead , Concave Quadrilateral , Antiparallelogram , House-Shape , Symmetric Pentagon , Concave Pentagon , Parallelogon , Arrow-Hexagon , L-Shape , Sharp Kink , Truncated Square , Frame , Threestar , Fourstar , Pentagram , Hexagram , Unicursal Hexagram , Cross , Oktagram , Star of Lakshmi , Polygram , Polygon
Round Forms: Circle , Semicircle , Circular Sector , Circular Segment , Circular Layer , Round Corner , Circular Corner , Crescent , Pointed Oval , Annulus , Annulus Sector , Curved Rectangle , Rounded Polygon , Rounded Rectangle , Ellipse , Semi-Ellipse , Elliptical Segment , Elliptical Sector , Stadium , Spiral , Log. Spiral , Reuleaux Triangle , Cycloid , Astroid , Hypocycloid , Cardioid , Epicycloid , Parabolic Segment , Arbelos , Salinon , Lune , Three Circles , Polycircle , Round-Edged Polygon , Gear , Oval , Lemniscate , Squircle , Digon , Spherical Triangle
3D
Platonic Solids: Tetrahedron , Cube , Octahedron , Dodecahedron , Icosahedron
Archimedean Solids: Truncated Tetrahedron , Cuboctahedron , Truncated Cube , Truncated Octahedron , Rhombicuboctahedron , Truncated Cuboctahedron , Icosidodecahedron , Truncated Dodecahedron , Truncated Icosahedron , Snub Cube , Rhombicosidodecahedron , Truncated Icosidodecahedron , Snub Dodecahedron
Catalan Solids: Triakis Tetrahedron , Rhombic Dodecahedron , Triakis Octahedron , Tetrakis Hexahedron , Deltoidal Icositetrahedron , Hexakis Octahedron , Rhombic Triacontahedron , Triakis Icosahedron , Pentakis Dodecahedron , Pentagonal Icositetrahedron , Deltoidal Hexecontahedron , Hexakis Icosahedron , Pentagonal Hexecontahedron
Johnson Solids: Pyramids , Cupolae , Rotunda , Elongated Pyramids , Disheptahedron , Snub Disphenoid , Sphenocorona
Other Polyhedrons: Cuboid , Square Pillar , Triangular Pyramid , Square Pyramid , Regular Pyramid , Pyramid , Regular Frustum , Frustum , Bipyramid , Bifrustum , Ramp , Right Wedge , Wedge , Rhombohedron , Parallelepiped , Prism , Oblique Prism , Antiprism , Prismatoid , Trapezohedron , Disphenoid , Corner , General Tetrahedron , Wedge-Cuboid , Half Cuboid , Skewed Cuboid , Skewed Three-Edged Prism , Truncated Rhombohedron , Hollow Cuboid , Hollow Pyramid , Hollow Frustum , Stellated Octahedron , Small Stellated Dodecahedron , Great Stellated Dodecahedron
Round Forms: Sphere , Hemisphere , Cylinder , Cut Cylinder , Oblique Cylinder , Generalized Cylinder , Cone , Truncated Cone , Oblique Circular Cone , Elliptic Cone , Bicone , Spheroid , Ellipsoid , Semi-Ellipsoid , Spherical Sector , Spherical Cap , Spherical Segment , Spherical Wedge , Cylindrical Wedge , Cylindrical Sector , Cylindrical Segment , Flat End Cylinder , Conical Sector , Conical Wedge , Spherical Shell , Cylindrical Shell , Hollow Cone , Truncated Hollow Cone , Spherical Ring , Torus , Spindle Torus , Toroid , Torus Sector , Toroid Sector , Arch , Reuleaux-Tetrahedron , Capsule , Lens , Barrel , Egg Shape , Paraboloid , Hyperboloid , Oloid , Steinmetz Solids
4D
Tesseract , Hypersphere
Anzeige

Oblique Circular Cone Calculator
Calculations in an oblique circular cone. This is a cone , where the apex isn't perpendicular above the base center. The deviation d is the horizontal distance of apex and base center. Enter the base radius and two of the three values h, d and l. Choose the number of decimal places and click Calculate. Angles are calculated and displayed in degrees, here you can convert angle units . The lateral surface is calculated with an integral and can only be estimated here. The estimation is the better, the larger d is compared to r and h, so the more oblique the cone is.

Formulas:
h² + d² = l²

h² + (d-r)² = m²

h² + (d+r)² = n²

α = arccos [ ( d² + l² - h² ) / ( 2 * d * l ) ]

β = arccos [ ( (d-r)² + m² - h² ) / ( 2 * (d-r) * m ) ]

if d = r: β = 90°

γ = arccos [ ( (d+r)² + n² - h² ) / ( 2 * (d+r) * n ) ]

L ≈ 2 * r * d, for d / ( r + h ) → ∞

π
L = r * ∫ √ [ r - d * cos(α) ]² + h² dα
0

B = π * r²

V = 1/3 * B * h

Radius, height, deviation and lenghts have the same unit (e.g. meter), lateral and base surface have this unit squared (e.g. square meter), the volume has this unit to the power of three (e.g. cubic meter). The lateral surface is the curved part of the surface area.

Anzeige

Share:

©

Jumk.de Webprojects
Anzeige