Home | Forms | Contact & Privacy Geometric Calculators German: Geometrierechner

2D Regular Polygons:
Equilateral Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, Nonagon, Decagon, Hendecagon, Dodecagon, N-gon

Other Polygons:
Triangle, Right Triangle, Isosceles Triangle, IR Triangle, Quadrilateral, Rectangle, Rhombus, Parallelogram, Kite, Right Trapezoid, Isosceles Trapezoid, Trapezoid, Cyclic Quadrilateral, Tangential Quadrilateral, Arrowhead, Antiparallelogram, House-Shape, Concave Pentagon, Parallelogon, Threestar, Fourstar, Pentagram, Hexagram, Oktagram, Star of Lakshmi

Round Forms:
Circle, Semicircle, Circular Sector, Circular Segment, Circular Layer, Round Corner, Annulus, Annulus Sector, Ellipse, Elliptical Segment, Stadium, Digon, Spherical Triangle, Reuleaux Triangle, Cycloid, Astroid, Hypocycloid, Cardioid, Parabolic Segment, Arbelos, Salinon, Lune, Oval, Three Circles, Lemniscate, Squircle
3D Platonic Solids:
Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron

Archimedean Solids:
Truncated Tetrahedron, Cuboctahedron, Truncated Cube, Truncated Octahedron, Rhombicuboctahedron, Icosidodecahedron, Truncated Dodecahedron, Truncated Icosahedron

Catalan Solids:
Triakis Tetrahedron, Rhombic Dodecahedron, Tetrakis Hexahedron, Deltoidal Icositetrahedron, Rhombic Triacontahedron

Johnson Solids:
Pyramids, Cupolae, Rotunda, Elongated Pyramids, Snub Disphenoid

Other Polyhedrons:
Cuboid, Square Pillar, Square Pyramid, Regular Pyramid, Pyramid, Regular Frustum, Frustum, Bipyramid, Ramp, Right Wedge, Wedge, Rhombohedron, Parallelepiped, Prism, Oblique Prism, Antiprism, Trapezohedron, Disphenoid, Corner, General Tetrahedron, Half Cuboid, Truncated Rhombohedron, Stellated Octahedron, Small Stellated Dodecahedron, Great Stellated Dodecahedron

Round Forms:
Sphere, Hemisphere, Cylinder, Cut Cylinder, Oblique Cylinder, Generalized Cylinder, Cone, Truncated Cone, Oblique Circular Cone, Elliptic Cone, Spheroid, Ellipsoid, Spherical Sector, Spherical Cap, Spherical Segment, Spherical Wedge, Cylindrical Wedge, Cylindrical Sector, Cylindrical Segment, Spherical Shell, Cylindrical Shell, Spherical Ring, Torus, Arch, Reuleaux-Tetrahedron, Capsule, Lens, Barrel, Paraboloid, Hyperboloid, Oloid, Steinmetz Solids


Right Triangle Calculator

Calculations in a right triangle. Enter at a, b and c two values and choose the number of decimal places. Then click Calculate. Angles are calculated in degrees, here you can convert angle units.

Pythagoras Opposite leg to α (a): Right triangle
Form: diagonally halved rectangle
Adjacent leg to α (b):
Hypotenuse (c):
Height (h):
Area (A):
Hypotenuse segment above a (p):
Hypotenuse segment above a (q):
Angle at point A (α):
Angle at point B (β):
Circumcircle radius (rc):
Incircle radius (ri):
Median line a (ma):
Median line b (mb):
Median line c (mc):
Round to    decimal places.

a² + b² = c² (Pythagorean theorem)
p = ( a² ) / c
q = ( b² ) / c
h = √( p * q )
Perimeter = a + b + c
A = ( a * b ) / 2
α = arccos( (b² + c² - a²) / (2bc) )
β = arccos( (a² + c² - b²) / (2ac) )
γ = π/2 = 90°
rc = c / 2
ri = ( a + b - c ) / 2
ma = √2 * ( b² + c² ) - a² / 2
mb = √2 * ( c² + a² ) - b² / 2
mc = √2 * ( a² + b² ) - c² / 2

Catheti (legs), hypotenuse, median lines, heights, perimeter and radius have the same unit (e.g. meter), the area has this unit squared (e.g. square meter).


The heights of the legs are identical with each other leg. The centroid of the right triangle is at the intersection of the median lines. The intersection of the bisecting lines is the center of the incircle. The center of the circumcircle is the intersection of the perpendicular bisectors of the legs and the center of the hypotenuse.

Right triangle, perimeter and area
perimeter p, area A
Right triangle, legs and hypotenuse
legs and hypotenuse

Right triangle, heights
Right triangle, hypotenuse segments
hypotenuse segments p and q

Right triangle, median lines and centroid
median lines and centroid
Right triangle, bisecting lines and incircle
bisecting lines and incircle

Right triangle, perpendicular bisectors and circumcircle
perpendicular bisectors and circumcircle



© Webprojects


↑ up