Anzeige


Geometry | Forms | Contact & Privacy Geometric Calculators German: Geometrierechner, Formen

  1D Line
2D Regular Polygons:
Equilateral Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, Nonagon, Decagon, Hendecagon, Dodecagon, Hexadecagon, N-gon, Polygon Ring

Other Polygons:
Triangle, Right Triangle, Isosceles Triangle, IR Triangle, Quadrilateral, Rectangle, Rhombus, Parallelogram, Half Square Kite, Right Kite, Kite, Right Trapezoid, Isosceles Trapezoid, Trapezoid, Cyclic Quadrilateral, Tangential Quadrilateral, Arrowhead, Concave Quadrilateral, Antiparallelogram, House-Shape, Symmetric Pentagon, Concave Pentagon, Parallelogon, Arrow-Hexagon, L-Shape, Sharp Kink, Truncated Square, Frame, Threestar, Fourstar, Pentagram, Hexagram, Unicursal Hexagram, Cross, Oktagram, Star of Lakshmi, Polygon

Round Forms:
Circle, Semicircle, Circular Sector, Circular Segment, Circular Layer, Round Corner, Circular Corner, Crescent, Pointed Oval, Annulus, Annulus Sector, Curved Rectangle, Rounded Rectangle, Ellipse, Semi-Ellipse, Elliptical Segment, Elliptical Sector, Stadium, Digon, Spherical Triangle, Spiral, Log. Spiral, Reuleaux Triangle, Cycloid, Astroid, Hypocycloid, Cardioid, Epicycloid, Parabolic Segment, Arbelos, Salinon, Lune, Three Circles, Polycircle, Oval, Lemniscate, Squircle
3D Platonic Solids:
Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron

Archimedean Solids:
Truncated Tetrahedron, Cuboctahedron, Truncated Cube, Truncated Octahedron, Rhombicuboctahedron, Truncated Cuboctahedron, Icosidodecahedron, Truncated Dodecahedron, Truncated Icosahedron, Snub Cube, Rhombicosidodecahedron, Truncated Icosidodecahedron, Snub Dodecahedron

Catalan Solids:
Triakis Tetrahedron, Rhombic Dodecahedron, Triakis Octahedron, Tetrakis Hexahedron, Deltoidal Icositetrahedron, Hexakis Octahedron, Rhombic Triacontahedron, Triakis Icosahedron, Pentakis Dodecahedron, Pentagonal Icositetrahedron, Deltoidal Hexecontahedron, Hexakis Icosahedron, Pentagonal Hexecontahedron

Johnson Solids:
Pyramids, Cupolae, Rotunda, Elongated Pyramids, Disheptahedron, Snub Disphenoid, Sphenocorona

Other Polyhedrons:
Cuboid, Square Pillar, Triangular Pyramid, Square Pyramid, Regular Pyramid, Pyramid, Regular Frustum, Frustum, Bipyramid, Bifrustum, Ramp, Right Wedge, Wedge, Rhombohedron, Parallelepiped, Prism, Oblique Prism, Antiprism, Prismatoid, Trapezohedron, Disphenoid, Corner, General Tetrahedron, Wedge-Cuboid, Half Cuboid, Skewed Cuboid, Skewed Three-Edged Prism, Truncated Rhombohedron, Hollow Cuboid, Hollow Pyramid, Hollow Frustum, Stellated Octahedron, Small Stellated Dodecahedron, Great Stellated Dodecahedron

Round Forms:
Sphere, Hemisphere, Cylinder, Cut Cylinder, Oblique Cylinder, Generalized Cylinder, Cone, Truncated Cone, Oblique Circular Cone, Elliptic Cone, Bicone, Spheroid, Ellipsoid, Semi-Ellipsoid, Spherical Sector, Spherical Cap, Spherical Segment, Spherical Wedge, Cylindrical Wedge, Cylindrical Sector, Cylindrical Segment, Flat End Cylinder, Conical Sector, Conical Wedge, Spherical Shell, Cylindrical Shell, Hollow Cone, Truncated Hollow Cone, Spherical Ring, Torus, Spindle Torus, Toroid, Torus Sector, Arch, Reuleaux-Tetrahedron, Capsule, Lens, Barrel, Egg Shape, Paraboloid, Hyperboloid, Oloid, Steinmetz Solids
4D Tesseract, Hypersphere


Anzeige


Kite Calculator

Calculations in a kite (deltoid). A kite is a tetragon with two neighboring pairs of sides with equal length, respectively a tetragon whose one diagonal is also a symmetry axis. Enter the lengths of both diagonals and the distance of the points A and E. Choose the number of decimal places and click Calculate. Angles are calculated and displayed in degrees, here you can convert angle units.


Euclid Symmetry diagonal (e): Kite
Other diagonal (f):
Distance AE (c):
First side (a):
Second side (b):
Perimeter (p):
Incircle radius (rI):
Area (A):
First angle (α):
Second angle (β):
Third angle (γ):
Round to    decimal places.



Formulas:
a = √ (f/2)² + c²
b = √ (f/2)² + (e-c)²
p = 2 * ( a + b )
A = ef / 2
rI = 2A / p
α = arccos( (c²+a²-(f/2)²) / ( 2*c*a ) )
γ = arccos( ((e-c)²+b²-(f/2)²) / ( 2*(e-c)*b ) )
β = ( 360° - α - γ) / 2

Lengths, diagonals, perimeter and incircle radius have the same unit (e.g. meter), the area has this unit squared (e.g. square meter).

Anzeige

The kite is axially symmetric to the symmetry diagonal. When the half kite has a right angle opposite to the dividing symmetry axis, only then it has an circumcircle. Its center is in the middle of the symmetry axis.

Kite, perimeter and area
perimeter p, area A
Kite, sides and angles
sides and angles

Kite, diagonals
diagonals
Kite, bisecting lines, incircle
bisecting lines and incircle

Kite, circumcircle
circumcircle



Anzeige


Share:    


© Jumk.de Webprojects




Anzeige


Anzeige

↑ up