Geometry | Forms | Contact & Privacy Geometric Calculators German: Geometrierechner, Formen

1DLine, Circular Arc, Parabola, Helix, Koch Curve
2D Regular Polygons:
Equilateral Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, Nonagon, Decagon, Hendecagon, Dodecagon, Hexadecagon, N-gon, Polygon Ring

Other Polygons:
Triangle, Right Triangle, Isosceles Triangle, IR Triangle, 1/2 EL Triangle, Golden Triangle, Quadrilateral, Rectangle, Golden Rectangle, Rhombus, Equidiagonal Rhombus, Parallelogram, Kite, 60-90-120 Kite, Half Square Kite, Right Kite, Trapezoid, Right Trapezoid, Isosceles Trapezoid, Tri-equilateral Trapezoid, Obtuse Trapezoid, Cyclic Quadrilateral, Tangential Quadrilateral, Arrowhead, Concave Quadrilateral, Crossed Rectangle, Antiparallelogram, House-Shape, Symmetric Pentagon, Diagonally Bisected Octagon, Cut Rectangle, Concave Pentagon, Concave Regular Pentagon, Stretched Pentagon, Straight Bisected Octagon, Stretched Hexagon, Symmetric Hexagon, Semi-regular Hexagon, Parallelogon, Concave Hexagon, Arrow-Hexagon, Rectangular Hexagon, L-Shape, Sharp Kink, T-Shape, Square Heptagon, Truncated Square, Stretched Octagon, Frame, Open Frame, Grid, Cross, X-Shape, H-Shape, Threestar, Fourstar, Pentagram, Hexagram, Unicursal Hexagram, Oktagram, Star of Lakshmi, Double Star Polygon, Polygram, The Hat, Polygon

Round Forms:
Circle, Semicircle, Circular Sector, Circular Segment, Circular Layer, Circular Central Segment, Round Corner, Circular Corner, Circle Tangent Arrow, Drop Shape, Crescent, Pointed Oval, Two Circles, Lancet Arch, Knoll, Elongated Semicircle, Annulus, Semi-Annulus, Annulus Sector, Annulus Segment, Cash, Curved Rectangle, Rounded Polygon, Rounded Rectangle, Ellipse, Semi-Ellipse, Elliptical Segment, Elliptical Sector, Elliptical Ring, Stadium, Half Stadium, Stadium Segment, Spiral, Log. Spiral, Reuleaux Triangle, Cycloid, Double Cycloid, Astroid, Hypocycloid, Cardioid, Epicycloid, Parabolic Segment, Heart, Tricorn, Pointed Semicircle, Interarc Triangle, Circular Arc Triangle, Interarc Quadrangle, Intercircle Quadrangle, Circular Arc Quadrangle, Circular Arc Polygon, Claw, Half Yin-Yang, Arbelos, Salinon, Bulge, Lune, Three Circles, Polycircle, Round-Edged Polygon, Rose, Gear, Oval, Egg-Profile, Lemniscate, Squircle, Circular Square, Digon, Spherical Triangle
3D Platonic Solids:
Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron

Archimedean Solids:
Truncated Tetrahedron, Cuboctahedron, Truncated Cube, Truncated Octahedron, Rhombicuboctahedron, Truncated Cuboctahedron, Icosidodecahedron, Truncated Dodecahedron, Truncated Icosahedron, Snub Cube, Rhombicosidodecahedron, Truncated Icosidodecahedron, Snub Dodecahedron

Catalan Solids:
Triakis Tetrahedron, Rhombic Dodecahedron, Triakis Octahedron, Tetrakis Hexahedron, Deltoidal Icositetrahedron, Hexakis Octahedron, Rhombic Triacontahedron, Triakis Icosahedron, Pentakis Dodecahedron, Pentagonal Icositetrahedron, Deltoidal Hexecontahedron, Hexakis Icosahedron, Pentagonal Hexecontahedron

Johnson Solids:
Pyramids, Cupolae, Rotunda, Elongated Pyramids, Gyroelongated Pyramids, Bipyramids, Elongated Bipyramids, Gyroelongated Square Dipyramid, Gyrobifastigium, Disheptahedron, Snub Disphenoid, Sphenocorona, Disphenocingulum

Other Polyhedrons:
Cuboid, Square Pillar, Triangular Pyramid, Square Pyramid, Regular Pyramid, Pyramid, Square Frustum, Regular Frustum, Frustum, Bent Pyramid, Regular Bipyramid, Bipyramid, Bifrustum, Frustum-Pyramid, Ramp, Right Wedge, Wedge, Half Tetrahedron, Rhombohedron, Parallelepiped, Regular Prism, Prism, Oblique Prism, Anticube, Antiprism, Prismatoid, Trapezohedron, Disphenoid, Corner, General Tetrahedron, Wedge-Cuboid, Half Cuboid, Skewed Cuboid, Ingot, Skewed Three-Edged Prism, Cut Cuboid, Truncated Cuboid, Obtuse Edged Cuboid, Elongated Dodecahedron, Truncated Rhombohedron, Obelisk, Bent Cuboid, Hollow Cuboid, Hollow Pyramid, Hollow Frustum, Star Pyramid, Stellated Octahedron, Small Stellated Dodecahedron, Great Stellated Dodecahedron, Great Dodecahedron, Great Icosahedron

Round Forms:
Sphere, Hemisphere, Quarter Sphere, Spherical Corner, Cylinder, Cut Cylinder, Oblique Cylinder, Bent Cylinder, Elliptic Cylinder, Generalized Cylinder, Cone, Truncated Cone, Oblique Circular Cone, Elliptic Cone, Truncated Elliptic Cone, General Cone, General Truncated Cone, Bicone, Truncated Bicone, Pointed Pillar, Rounded Cone, Elongated Hemisphere, Drop, Spheroid, Ellipsoid, Semi-Ellipsoid, Spherical Sector, Spherical Cap, Spherical Segment, Spherical Central Segment, Double Calotte, Rounded Disc, Double Sphere, Spherical Wedge, Half Cylinder, Diagonally Halved Cylinder, Cylindrical Wedge, Cylindrical Sector, Cylindrical Segment, Flat End Cylinder, Half Cone, Conical Sector, Conical Wedge, Spherical Shell, Half Spherical Shell, Spherical Shell Cap, Cylindrical Shell, Cut Cylindrical Shell, Oblique Cylindrical Shell, Hollow Cone, Truncated Hollow Cone, Spherical Ring, Torus, Spindle Torus, Toroid, Torus Sector, Toroid Sector, Arch, Reuleaux-Tetrahedron, Capsule, Half Capsule, Capsule Segment, Double Point, Anticone, Truncated Anticone, Sphere-Cylinder, Lens, Concave Lens, Barrel, Egg Shape, Paraboloid, Hyperboloid, Oloid, Steinmetz Solids, Solid of Revolution
4D Tesseract, Hypersphere


Anzeige


Cyclic Quadrilateral Calculator

Calculations at a cyclic quadrilateral. A cyclic quadrilateral is a quadrangle whose vertices lie on a circle, the sides are chords of the circle.
Enter the four sides (chords) a, b, c and d, choose the number of decimal places and click Calculate. Angles are calculated and displayed in degrees, here you can convert angle units.


Ptolemy Side a: Cyclic Quadrilateral
Side b:
Side c:
Side d:
Diagonal e:
Diagonal f:
Angle at A (α):
Angle at B (β):
Angle at C (γ):
Angle at D (δ):
Perimeter (p):
Circumcircle radius (rc):
Area (A):
Round to    decimal places.



Formulas:
e = √ (ac+bd) * (ad+bc) / (ab+cd)
f = √ (ab+cd) * (ac+bd) / (ad+bc)
a * c + b * d = e * f (Ptolemy's theorem)
α = arccos( (a²+d²-b²-c²) / (2*(ad+bc)) )
δ = arccos( (d²+c²-a²-b²) / (2*(dc+ab)) )
β = 180° - δ
γ = 180° - α
p = a + b + c + d
Semiperimeter s = p / 2
A = √ (s-a) * (s-b) * (s-c) * (s-d)
rc = 1/(4*A) * √ (ab+cd) * (ac+bd) * (ad+bc)

Side lengths, diagonals, perimeter and radius have the same unit (e.g. meter), the area has this unit squared (e.g. square meter).


Anzeige

The center of the circle is at the intersection of two perpendicular bisectors. These can be constructed by drawing intersecting circles around two neighboring vertices and connecting their intersections.

Cyclic quadrilateral, perimeter and area
perimeter p, area A
Cyclic quadrilateral, sides and angles
sides and angles

Cyclic quadrilateral, radius and circumcircle
radius and circumcircle
Cyclic quadrilateral, perpendicular bisectors
perpendicular bisectors

A chord is the straight line connecting two points on a curve, whereby this curve is often, as here, a circular path. The cyclic quadrilateral is made up of four chords, two of which start at a point on the circle without these chords intersecting. Ptolemy's theorem, which refers to the lengths of the sides and the two diagonals in the chord quadrilateral, can be understood as a generalization of the much more well-known Pythagorean theorem. It is written out as follows: the product of the two diagonal lengths is equal to the sum of the products of the both opposite side lengths. This theorem was formulated by Claudius Ptolemy, who worked in Alexandria in Egypt in the second century and was mainly concerned with astronomy and geometry. His geocentric worldview, in which the earth is at the center and is orbited by the sun and the other planets, was in use for centuries, but was eventually proven to be fundamentally wrong. Ptolemy's theorem, on the other hand, is still correct.



© Jumk.de Webprojects | Online Calculators





Anzeige



Anzeige



↑ up