1D Line
2D
Regular Polygons: Equilateral Triangle , Square , Pentagon , Hexagon , Heptagon , Octagon , Nonagon , Decagon , Hendecagon , Dodecagon , Hexadecagon , N-gon , Polygon Ring
Other Polygons: Triangle , Right Triangle , Isosceles Triangle , IR Triangle , Quadrilateral , Rectangle , Rhombus , Parallelogram , Right Kite , Kite , Right Trapezoid , Isosceles Trapezoid , Trapezoid , Cyclic Quadrilateral , Tangential Quadrilateral , Arrowhead , Concave Quadrilateral , Antiparallelogram , House-Shape , Symmetric Pentagon , Concave Pentagon , Parallelogon , Arrow-Hexagon , Sharp Kink , Frame , Threestar , Fourstar , Pentagram , Hexagram , Unicursal Hexagram , Cross , Oktagram , Star of Lakshmi , Polygon
Round Forms: Circle , Semicircle , Circular Sector , Circular Segment , Circular Layer , Round Corner , Circular Corner , Annulus , Annulus Sector , Curved Rectangle , Ellipse , Semi-Ellipse , Elliptical Segment , Elliptical Sector , Stadium , Digon , Spherical Triangle , Spiral , Log. Spiral , Reuleaux Triangle , Cycloid , Astroid , Hypocycloid , Cardioid , Epicycloid , Parabolic Segment , Arbelos , Salinon , Lune , Three Circles , Polycircle , Oval , Lemniscate , Squircle
3D
Platonic Solids: Tetrahedron , Cube , Octahedron , Dodecahedron , Icosahedron
Archimedean Solids: Truncated Tetrahedron , Cuboctahedron , Truncated Cube , Truncated Octahedron , Rhombicuboctahedron , Truncated Cuboctahedron , Icosidodecahedron , Truncated Dodecahedron , Truncated Icosahedron , Snub Cube
Catalan Solids: Triakis Tetrahedron , Rhombic Dodecahedron , Triakis Octahedron , Tetrakis Hexahedron , Deltoidal Icositetrahedron , Hexakis Octahedron , Rhombic Triacontahedron , Pentakis Dodecahedron , Pentagonal Icositetrahedron
Johnson Solids: Pyramids , Cupolae , Rotunda , Elongated Pyramids , Snub Disphenoid
Other Polyhedrons: Cuboid , Square Pillar , Triangular Pyramid , Square Pyramid , Regular Pyramid , Pyramid , Regular Frustum , Frustum , Bipyramid , Bifrustum , Ramp , Right Wedge , Wedge , Rhombohedron , Parallelepiped , Prism , Oblique Prism , Antiprism , Prismatoid , Trapezohedron , Disphenoid , Corner , General Tetrahedron , Half Cuboid , Skewed Cuboid , Skewed Three-Edged Prism , Truncated Rhombohedron , Hollow Cuboid , Hollow Pyramid , Stellated Octahedron , Small Stellated Dodecahedron , Great Stellated Dodecahedron
Round Forms: Sphere , Hemisphere , Cylinder , Cut Cylinder , Oblique Cylinder , Generalized Cylinder , Cone , Truncated Cone , Oblique Circular Cone , Elliptic Cone , Bicone , Spheroid , Ellipsoid , Semi-Ellipsoid , Spherical Sector , Spherical Cap , Spherical Segment , Spherical Wedge , Cylindrical Wedge , Cylindrical Sector , Cylindrical Segment , Flat End Cylinder , Spherical Shell , Cylindrical Shell , Hollow Cone , Truncated Hollow Cone , Spherical Ring , Torus , Arch , Reuleaux-Tetrahedron , Capsule , Lens , Barrel , Egg Shape , Paraboloid , Hyperboloid , Oloid , Steinmetz Solids
4D
Tesseract , Hypersphere
Anzeige

Parallelogon Calculator
Calculations in a convex, hexagonal parallelogon or elongated parallelogram. A parallelogon is a polygon with parallel opposite sides of equal length each, which can be used to tile a plane without gap, so that the edges fit together. There are only four- and six-sided parallelogons. A four-sided parallelogon is called parallelogram . Enter the three side lengths and two of the angles. The angles must be smaller than 180°. Choose the number of decimal places and click Calculate. Please enter angles in degrees, here you can convert angle units .

Formulas:
α + β + γ = 360°
d_{a} = √b² + c² - 2bc * cos( α )
d_{b} = √a² + c² - 2ac * cos( β )
d_{c} = √a² + b² - 2ab * cos( γ )
d_{ab} = √a² + d_{a} ² - 2ad_{a} * cos{ arccos[ ( a² + d_{c} ² - b² ) / 2ad_{c} ] + arccos[ ( d_{a} ² + d_{c} ² - d_{b} ² ) / 2d_{a} d_{c} ] }
d_{ac} = √a² + d_{a} ² - 2ad_{a} * cos{ arccos[ ( a² + d_{b} ² - c² ) / 2ad_{b} ] + arccos[ ( d_{a} ² + d_{b} ² - d_{c} ² ) / 2d_{a} d_{b} ] }
d_{bc} = √b² + d_{b} ² - 2bd_{b} * cos{ arccos[ ( b² + d_{a} ² - c² ) / 2bd_{a} ] + arccos[ ( d_{b} ² + d_{a} ² - d_{c} ² ) / 2d_{b} d_{a} ] }
h_{a} = d_{a} * sin{ arccos[ ( a² + d_{a} ² - d_{ac} ² ) / 2ad_{a} ] }
h_{b} = d_{b} * sin{ arccos[ ( b² + d_{b} ² - d_{ab} ² ) / 2bd_{b} ] }
h_{c} = d_{a} * sin{ arccos[ ( c² + d_{c} ² - d_{bc} ² ) / 2cd_{c} ] }
p = 2 * ( a + b + c )
v = a + b + d_{c}
w = a + d_{b} + c
x = d_{a} + b + c
y = d_{a} + d_{b} + d_{c}
A = √v/2 * (v/2-a) * (v/2-b) * (v/2-d_{c} ) + √w/2 * (w/2-a) * (w/2-d_{b} ) * (w/2-c) + √x/2 * (x/2-d_{a} ) * (x/2-b) * (x/2-c) + √y/2 * (y/2-d_{a} ) * (y/2-d_{b} ) * (y/2-d_{c} )

Lengths, diagonals, heights and perimeter have the same unit (e.g. meter), the area has this unit squared (e.g. square meter).

Anzeige

Share:

©

Jumk.de Webprojects
Anzeige