1D Line
2D
Regular Polygons: Equilateral Triangle , Square , Pentagon , Hexagon , Heptagon , Octagon , Nonagon , Decagon , Hendecagon , Dodecagon , Hexadecagon , N-gon , Polygon Ring
Other Polygons: Triangle , Right Triangle , Isosceles Triangle , IR Triangle , Quadrilateral , Rectangle , Golden Rectangle , Rhombus , Parallelogram , Half Square Kite , Right Kite , Kite , Right Trapezoid , Isosceles Trapezoid , Tri-equilateral Trapezoid , Trapezoid , Cyclic Quadrilateral , Tangential Quadrilateral , Arrowhead , Concave Quadrilateral , Crossed Rectangle , Antiparallelogram , House-Shape , Symmetric Pentagon , Cut Rectangle , Concave Pentagon , Concave Regular Pentagon , Parallelogon , Stretched Hexagon , Concave Hexagon , Arrow-Hexagon , Rectangular Hexagon , L-Shape , Sharp Kink , T-Shape , Truncated Square , Frame , Open Frame , Grid , Cross , X-Shape , H-Shape , Threestar , Fourstar , Pentagram , Hexagram , Unicursal Hexagram , Oktagram , Star of Lakshmi , Double Star Polygon , Polygram , Polygon
Round Forms: Circle , Semicircle , Circular Sector , Circular Segment , Circular Layer , Circular Central Segment , Round Corner , Circular Corner , Circle Tangent Arrow , Drop Shape , Crescent , Pointed Oval , Lancet Arch , Knoll , Annulus , Annulus Sector , Curved Rectangle , Rounded Polygon , Rounded Rectangle , Ellipse , Semi-Ellipse , Elliptical Segment , Elliptical Sector , Elliptical Ring , Stadium , Spiral , Log. Spiral , Reuleaux Triangle , Cycloid , Double Cycloid , Astroid , Hypocycloid , Cardioid , Epicycloid , Parabolic Segment , Heart , Tricorn , Interarc Triangle , Circular Arc Triangle , Interarc Quadrangle , Intercircle Quadrangle , Circular Arc Quadrangle , Circular Arc Polygon , Claw , Half Yin-Yang , Arbelos , Salinon , Bulge , Lune , Three Circles , Polycircle , Round-Edged Polygon , Rose , Gear , Oval , Egg-Profile , Lemniscate , Squircle , Circular Square , Digon , Spherical Triangle
3D
Platonic Solids: Tetrahedron , Cube , Octahedron , Dodecahedron , Icosahedron
Archimedean Solids: Truncated Tetrahedron , Cuboctahedron , Truncated Cube , Truncated Octahedron , Rhombicuboctahedron , Truncated Cuboctahedron , Icosidodecahedron , Truncated Dodecahedron , Truncated Icosahedron , Snub Cube , Rhombicosidodecahedron , Truncated Icosidodecahedron , Snub Dodecahedron
Catalan Solids: Triakis Tetrahedron , Rhombic Dodecahedron , Triakis Octahedron , Tetrakis Hexahedron , Deltoidal Icositetrahedron , Hexakis Octahedron , Rhombic Triacontahedron , Triakis Icosahedron , Pentakis Dodecahedron , Pentagonal Icositetrahedron , Deltoidal Hexecontahedron , Hexakis Icosahedron , Pentagonal Hexecontahedron
Johnson Solids: Pyramids , Cupolae , Rotunda , Elongated Pyramids , Gyroelongated Pyramids , Bipyramids , Elongated Bipyramids , Gyroelongated Square Dipyramid , Gyrobifastigium , Disheptahedron , Snub Disphenoid , Sphenocorona , Disphenocingulum
Other Polyhedrons: Cuboid , Square Pillar , Triangular Pyramid , Square Pyramid , Regular Pyramid , Pyramid , Regular Frustum , Frustum , Regular Bipyramid , Bipyramid , Bifrustum , Frustum-Pyramid , Ramp , Right Wedge , Wedge , Half Tetrahedron , Rhombohedron , Parallelepiped , Regular Prism , Prism , Oblique Prism , Antiprism , Prismatoid , Trapezohedron , Disphenoid , Corner , General Tetrahedron , Wedge-Cuboid , Half Cuboid , Skewed Cuboid , Ingot , Skewed Three-Edged Prism , Cut Cuboid , Truncated Cuboid , Obtuse Edged Cuboid , Obelisk , Elongated Dodecahedron , Truncated Rhombohedron , Hollow Cuboid , Hollow Pyramid , Hollow Frustum , Star Pyramid , Stellated Octahedron , Small Stellated Dodecahedron , Great Stellated Dodecahedron , Great Dodecahedron , Great Icosahedron
Round Forms: Sphere , Hemisphere , Spherical Corner , Cylinder , Cut Cylinder , Oblique Cylinder , Bent Cylinder , Generalized Cylinder , Cone , Truncated Cone , Oblique Circular Cone , Elliptic Cone , Bicone , Truncated Bicone , Pointed Pillar , Rounded Cone , Drop , Spheroid , Ellipsoid , Semi-Ellipsoid , Spherical Sector , Spherical Cap , Spherical Segment , Spherical Central Segment , Double Calotte , Spherical Wedge , Half Cylinder , Diagonally Halved Cylinder , Cylindrical Wedge , Cylindrical Sector , Cylindrical Segment , Flat End Cylinder , Half Cone , Conical Sector , Conical Wedge , Spherical Shell , Half Spherical Shell , Cylindrical Shell , Cut Cylindrical Shell , Oblique Cylindrical Shell , Hollow Cone , Truncated Hollow Cone , Spherical Ring , Torus , Spindle Torus , Toroid , Torus Sector , Toroid Sector , Arch , Reuleaux-Tetrahedron , Capsule , Capsule Segment , Double Point , Lens , Concave Lens , Barrel , Egg Shape , Paraboloid , Hyperboloid , Oloid , Steinmetz Solids , Solid of Revolution
4D
Tesseract , Hypersphere
Anzeige

Parallelogon Calculator
Calculations at a convex, hexagonal parallelogon or elongated parallelogram. A parallelogon is a polygon with parallel opposite sides of equal length each, which can be used to tile a plane without gap, so that the edges fit together. There are only four- and six-sided parallelogons. A four-sided parallelogon is called parallelogram . Enter the three side lengths and two of the angles. The angles must be smaller than 180°. Choose the number of decimal places and click Calculate. Please enter angles in degrees, here you can convert angle units .

Formulas:
α + β + γ = 360°
d_{a} = √b² + c² - 2bc * cos( α )
d_{b} = √a² + c² - 2ac * cos( β )
d_{c} = √a² + b² - 2ab * cos( γ )
d_{ab} = √a² + d_{a} ² - 2ad_{a} * cos{ arccos[ ( a² + d_{c} ² - b² ) / 2ad_{c} ] + arccos[ ( d_{a} ² + d_{c} ² - d_{b} ² ) / 2d_{a} d_{c} ] }
d_{ac} = √a² + d_{a} ² - 2ad_{a} * cos{ arccos[ ( a² + d_{b} ² - c² ) / 2ad_{b} ] + arccos[ ( d_{a} ² + d_{b} ² - d_{c} ² ) / 2d_{a} d_{b} ] }
d_{bc} = √b² + d_{b} ² - 2bd_{b} * cos{ arccos[ ( b² + d_{a} ² - c² ) / 2bd_{a} ] + arccos[ ( d_{b} ² + d_{a} ² - d_{c} ² ) / 2d_{b} d_{a} ] }
h_{a} = d_{a} * sin{ arccos[ ( a² + d_{a} ² - d_{ac} ² ) / 2ad_{a} ] }
h_{b} = d_{b} * sin{ arccos[ ( b² + d_{b} ² - d_{ab} ² ) / 2bd_{b} ] }
h_{c} = d_{a} * sin{ arccos[ ( c² + d_{c} ² - d_{bc} ² ) / 2cd_{c} ] }
p = 2 * ( a + b + c )
v = a + b + d_{c}
w = a + d_{b} + c
x = d_{a} + b + c
y = d_{a} + d_{b} + d_{c}
A = √v/2 * (v/2-a) * (v/2-b) * (v/2-d_{c} ) + √w/2 * (w/2-a) * (w/2-d_{b} ) * (w/2-c) + √x/2 * (x/2-d_{a} ) * (x/2-b) * (x/2-c) + √y/2 * (y/2-d_{a} ) * (y/2-d_{b} ) * (y/2-d_{c} )

Lengths, diagonals, heights and perimeter have the same unit (e.g. meter), the area has this unit squared (e.g. square meter).

Anzeige

Share:

©

Jumk.de Webprojects
Anzeige