Geometry | Forms | Contact & Privacy Geometric Calculators German: Geometrierechner, Formen

1DLine, Circular Arc, Parabola, Helix, Koch Curve
2D Regular Polygons:
Equilateral Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, Nonagon, Decagon, Hendecagon, Dodecagon, Hexadecagon, N-gon, Polygon Ring

Other Polygons:
Triangle, Right Triangle, Isosceles Triangle, IR Triangle, 1/2 EL Triangle, Golden Triangle, Quadrilateral, Rectangle, Golden Rectangle, Rhombus, Equidiagonal Rhombus, Parallelogram, Kite, 60-90-120 Kite, Half Square Kite, Right Kite, Trapezoid, Right Trapezoid, Isosceles Trapezoid, Tri-equilateral Trapezoid, Obtuse Trapezoid, Cyclic Quadrilateral, Tangential Quadrilateral, Arrowhead, Concave Quadrilateral, Crossed Rectangle, Antiparallelogram, House-Shape, Symmetric Pentagon, Diagonally Bisected Octagon, Cut Rectangle, Triangle Segment, Concave Pentagon, Concave Regular Pentagon, Stretched Pentagon, Straight Bisected Octagon, Stretched Hexagon, Symmetric Hexagon, Semi-regular Hexagon, Parallelogon, Concave Hexagon, Arrow-Hexagon, Rectangular Hexagon, L-Shape, Sharp Kink, T-Shape, Square Heptagon, Truncated Square, Stretched Octagon, Frame, Open Frame, Grid, Cross, X-Shape, H-Shape, Threestar, Fourstar, Pentagram, Hexagram, Unicursal Hexagram, Oktagram, Star of Lakshmi, Double Star Polygon, Polygram, The Hat, Polygon

Round Forms:
Circle, Semicircle, Circular Sector, Circular Segment, Circular Layer, Circular Central Segment, Round Corner, Circular Corner, Circle Tangent Arrow, Drop Shape, Crescent, Pointed Oval, Two Circles, Lancet Arch, Knoll, Elongated Semicircle, Annulus, Semi-Annulus, Annulus Sector, Annulus Segment, Annulus stripe, Curved Rectangle, Cash, Rounded Polygon, Rounded Rectangle, Ellipse, Semi-Ellipse, Elliptical Segment, Elliptical Sector, Kepler Sector, Elliptical Ring, Stadium, Half Stadium, Stadium Segment, Spiral, Log. Spiral, Reuleaux Triangle, Cycloid, Double Cycloid, Astroid, Hypocycloid, Cardioid, Epicycloid, Parabolic Segment, Heart, Tricorn, Pointed Semicircle, Interarc Triangle, Circular Arc Triangle, Interarc Quadrangle, Intercircle Quadrangle, Circular Arc Quadrangle, Circular Arc Polygon, Claw, Half Yin-Yang, Arbelos, Salinon, Bulge, Lune, Three Circles, Polycircle, Round-Edged Polygon, Rose, Gear, Oval, Egg-Profile, Lemniscate, Squircle, Circular Square, Digon, Spherical Triangle
3D Platonic Solids:
Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron

Archimedean Solids:
Truncated Tetrahedron, Cuboctahedron, Truncated Cube, Truncated Octahedron, Rhombicuboctahedron, Truncated Cuboctahedron, Icosidodecahedron, Truncated Dodecahedron, Truncated Icosahedron, Snub Cube, Rhombicosidodecahedron, Truncated Icosidodecahedron, Snub Dodecahedron

Catalan Solids:
Triakis Tetrahedron, Rhombic Dodecahedron, Triakis Octahedron, Tetrakis Hexahedron, Deltoidal Icositetrahedron, Hexakis Octahedron, Rhombic Triacontahedron, Triakis Icosahedron, Pentakis Dodecahedron, Pentagonal Icositetrahedron, Deltoidal Hexecontahedron, Hexakis Icosahedron, Pentagonal Hexecontahedron

Johnson Solids:
Pyramids, Cupolae, Rotunda, Elongated Pyramids, Gyroelongated Pyramids, Bipyramids, Elongated Bipyramids, Gyroelongated Square Dipyramid, Gyrobifastigium, Disheptahedron, Snub Disphenoid, Sphenocorona, Disphenocingulum

Other Polyhedrons:
Cuboid, Square Pillar, Triangular Pyramid, Square Pyramid, Regular Pyramid, Pyramid, Square Frustum, Regular Frustum, Frustum, Bent Pyramid, Regular Bipyramid, Bipyramid, Bifrustum, Frustum-Pyramid, Ramp, Right Wedge, Wedge, Half Tetrahedron, Rhombohedron, Parallelepiped, Regular Prism, Prism, Oblique Prism, Anticube, Antiprism, Prismatoid, Trapezohedron, Disphenoid, Corner, General Tetrahedron, Wedge-Cuboid, Half Cuboid, Skewed Cuboid, Ingot, Skewed Three-Edged Prism, Cut Cuboid, Truncated Cuboid, Obtuse Edged Cuboid, Elongated Dodecahedron, Truncated Rhombohedron, Obelisk, Bent Cuboid, Hollow Cuboid, Hollow Pyramid, Hollow Frustum, Star Pyramid, Stellated Octahedron, Small Stellated Dodecahedron, Great Stellated Dodecahedron, Great Dodecahedron, Great Icosahedron

Round Forms:
Sphere, Hemisphere, Quarter Sphere, Spherical Corner, Cylinder, Cut Cylinder, Oblique Cylinder, Bent Cylinder, Elliptic Cylinder, Generalized Cylinder, Cone, Truncated Cone, Oblique Circular Cone, Elliptic Cone, Truncated Elliptic Cone, General Cone, General Truncated Cone, Bicone, Truncated Bicone, Pointed Pillar, Rounded Cone, Elongated Hemisphere, Drop, Spheroid, Ellipsoid, Semi-Ellipsoid, Spherical Sector, Spherical Cap, Spherical Segment, Spherical Central Segment, Double Calotte, Rounded Disc, Double Sphere, Spherical Wedge, Half Cylinder, Diagonally Halved Cylinder, Cylindrical Wedge, Cylindrical Sector, Cylindrical Segment, Flat End Cylinder, Half Cone, Conical Sector, Conical Wedge, Spherical Shell, Half Spherical Shell, Spherical Shell Cap, Cylindrical Shell, Cut Cylindrical Shell, Oblique Cylindrical Shell, Hollow Cone, Truncated Hollow Cone, Spherical Ring, Torus, Spindle Torus, Toroid, Torus Sector, Toroid Sector, Arch, Reuleaux-Tetrahedron, Capsule, Half Capsule, Capsule Segment, Double Point, Anticone, Truncated Anticone, Sphere-Cylinder, Lens, Concave Lens, Barrel, Egg Shape, Paraboloid, Hyperboloid, Oloid, Steinmetz Solids, Solid of Revolution
4D Tesseract, Hypersphere


Anzeige


Fourstar Calculator

Calculations at a fourstar or tetragram. At an angle of α<90° this is a concave, equilateral octagon. This star with four spikes is formed by attaching four isosceles triangles with legs length a and base length b to a square with edge length b.
Enter the edge length a and one angles α or β, choose the number of decimal places and click Calculate. Please enter angles in degrees, here you can convert angle units. The angle α must be smaller than 180°. If the angle α is 90 degrees, then the fourstar is not a star, but a square with side length 2a. With a smaller angle, the fourstar is concave; with a larger angle, it is convex and therefore actually no longer a star.


Euclid Edge length (a): Fourstar - Concave, Equilateral Octagon
Concave fourstar
Inner angle α:
Outer angle β:
Spike base (b):
Spike height (i):
Diameter (d):
Chord length (l):
Perimeter (p):
Area (A):
Round to    decimal places.



Formulas:
β = 90° + α
b = √ 2 * a² * ( 1 - cos(α) )
i = √( 4 * a² - b² ) / 4
d = 2 * i + b
l = √ 2 * a² * ( 1 - cos(β) )
p = 8 * a
A = 2 * i * b + b²

Lengths, height and perimeter have the same unit (e.g. meter), the area has this unit squared (e.g. square meter).

The fourstar is the second simplest form of a polygram, consisting of a regular polygon and a number of isosceles triangles equal to the number of sides of the polygon, in this case four. The fourstar is axially symmetrical to each of both bisectors of the opposite triangles and also to both diagonals of the central square. So it has four axes of symmetry. It is also rotationally symmetrical at angles of 90 degrees and multiples thereof. The fourstar is point symmetrical to its central point. If the vertices of a concave fourstar are connected, a square with side length l is obtained. On this square, vertices with interior angle α can be added. This new fourstar is geometrically similar to the original, but rotated by 45 degrees.
Four-pronged stars are used in decoration and as symbols for astronomical stars. Both are often used together with five-pointed stars, which then are often regular pentagrams. There is no regular shape for tetragrams, only for stars with more than four prongs.



© Jumk.de Webprojects | Online Calculators





Anzeige



Anzeige



↑ up





Bluesky Logo