Geometry | Forms | Contact & Privacy Geometric Calculators German: Geometrierechner, Formen

1DLine, Circular Arc, Parabola, Helix, Koch Curve
2D Regular Polygons:
Equilateral Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, Nonagon, Decagon, Hendecagon, Dodecagon, Hexadecagon, N-gon, Polygon Ring

Other Polygons:
Triangle, Right Triangle, Isosceles Triangle, IR Triangle, 1/2 EL Triangle, Quadrilateral, Rectangle, Golden Rectangle, Rhombus, Parallelogram, Kite, 60-90-120 Kite, Half Square Kite, Right Kite, Trapezoid, Right Trapezoid, Isosceles Trapezoid, Tri-equilateral Trapezoid, Obtuse Trapezoid, Cyclic Quadrilateral, Tangential Quadrilateral, Arrowhead, Concave Quadrilateral, Crossed Rectangle, Antiparallelogram, House-Shape, Symmetric Pentagon, Diagonally Bisected Octagon, Cut Rectangle, Concave Pentagon, Concave Regular Pentagon, Stretched Pentagon, Straight Bisected Octagon, Stretched Hexagon, Symmetric Hexagon, Semi-regular Hexagon, Parallelogon, Concave Hexagon, Arrow-Hexagon, Rectangular Hexagon, L-Shape, Sharp Kink, T-Shape, Square Heptagon, Truncated Square, Stretched Octagon, Frame, Open Frame, Grid, Cross, X-Shape, H-Shape, Threestar, Fourstar, Pentagram, Hexagram, Unicursal Hexagram, Oktagram, Star of Lakshmi, Double Star Polygon, Polygram, The Hat, Polygon

Round Forms:
Circle, Semicircle, Circular Sector, Circular Segment, Circular Layer, Circular Central Segment, Round Corner, Circular Corner, Circle Tangent Arrow, Drop Shape, Crescent, Pointed Oval, Two Circles, Lancet Arch, Knoll, Elongated Semicircle, Annulus, Semi-Annulus, Annulus Sector, Annulus Segment, Cash, Curved Rectangle, Rounded Polygon, Rounded Rectangle, Ellipse, Semi-Ellipse, Elliptical Segment, Elliptical Sector, Elliptical Ring, Stadium, Spiral, Log. Spiral, Reuleaux Triangle, Cycloid, Double Cycloid, Astroid, Hypocycloid, Cardioid, Epicycloid, Parabolic Segment, Heart, Tricorn, Pointed Semicircle, Interarc Triangle, Circular Arc Triangle, Interarc Quadrangle, Intercircle Quadrangle, Circular Arc Quadrangle, Circular Arc Polygon, Claw, Half Yin-Yang, Arbelos, Salinon, Bulge, Lune, Three Circles, Polycircle, Round-Edged Polygon, Rose, Gear, Oval, Egg-Profile, Lemniscate, Squircle, Circular Square, Digon, Spherical Triangle
3D Platonic Solids:
Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron

Archimedean Solids:
Truncated Tetrahedron, Cuboctahedron, Truncated Cube, Truncated Octahedron, Rhombicuboctahedron, Truncated Cuboctahedron, Icosidodecahedron, Truncated Dodecahedron, Truncated Icosahedron, Snub Cube, Rhombicosidodecahedron, Truncated Icosidodecahedron, Snub Dodecahedron

Catalan Solids:
Triakis Tetrahedron, Rhombic Dodecahedron, Triakis Octahedron, Tetrakis Hexahedron, Deltoidal Icositetrahedron, Hexakis Octahedron, Rhombic Triacontahedron, Triakis Icosahedron, Pentakis Dodecahedron, Pentagonal Icositetrahedron, Deltoidal Hexecontahedron, Hexakis Icosahedron, Pentagonal Hexecontahedron

Johnson Solids:
Pyramids, Cupolae, Rotunda, Elongated Pyramids, Gyroelongated Pyramids, Bipyramids, Elongated Bipyramids, Gyroelongated Square Dipyramid, Gyrobifastigium, Disheptahedron, Snub Disphenoid, Sphenocorona, Disphenocingulum

Other Polyhedrons:
Cuboid, Square Pillar, Triangular Pyramid, Square Pyramid, Regular Pyramid, Pyramid, Square Frustum, Regular Frustum, Frustum, Bent Pyramid, Regular Bipyramid, Bipyramid, Bifrustum, Frustum-Pyramid, Ramp, Right Wedge, Wedge, Half Tetrahedron, Rhombohedron, Parallelepiped, Regular Prism, Prism, Oblique Prism, Anticube, Antiprism, Prismatoid, Trapezohedron, Disphenoid, Corner, General Tetrahedron, Wedge-Cuboid, Half Cuboid, Skewed Cuboid, Ingot, Skewed Three-Edged Prism, Cut Cuboid, Truncated Cuboid, Obtuse Edged Cuboid, Elongated Dodecahedron, Truncated Rhombohedron, Obelisk, Bent Cuboid, Hollow Cuboid, Hollow Pyramid, Hollow Frustum, Star Pyramid, Stellated Octahedron, Small Stellated Dodecahedron, Great Stellated Dodecahedron, Great Dodecahedron, Great Icosahedron

Round Forms:
Sphere, Hemisphere, Spherical Corner, Cylinder, Cut Cylinder, Oblique Cylinder, Bent Cylinder, Elliptic Cylinder, Generalized Cylinder, Cone, Truncated Cone, Oblique Circular Cone, Elliptic Cone, Truncated Elliptic Cone, General Cone, General Truncated Cone, Bicone, Truncated Bicone, Pointed Pillar, Rounded Cone, Drop, Spheroid, Ellipsoid, Semi-Ellipsoid, Spherical Sector, Spherical Cap, Spherical Segment, Spherical Central Segment, Double Calotte, Double Sphere, Spherical Wedge, Half Cylinder, Diagonally Halved Cylinder, Cylindrical Wedge, Cylindrical Sector, Cylindrical Segment, Flat End Cylinder, Half Cone, Conical Sector, Conical Wedge, Spherical Shell, Half Spherical Shell, Spherical Shell Cap, Cylindrical Shell, Cut Cylindrical Shell, Oblique Cylindrical Shell, Hollow Cone, Truncated Hollow Cone, Spherical Ring, Torus, Spindle Torus, Toroid, Torus Sector, Toroid Sector, Arch, Reuleaux-Tetrahedron, Capsule, Capsule Segment, Double Point, Anticone, Truncated Anticone, Sphere-Cylinder, Lens, Concave Lens, Barrel, Egg Shape, Paraboloid, Hyperboloid, Oloid, Steinmetz Solids, Solid of Revolution
4D Tesseract, Hypersphere


Anzeige


Isosceles Trapezoid Calculator

Calculations at an isosceles trapezoid (or isosceles trapezium). This is a trapezoid with two opposite legs of equal length with mirrored angles.
Enter the three side lengths, choose the number of decimal places and click Calculate. Angles are calculated and displayed in degrees, here you can convert angle units.


Euclid Longer side (a): Isosceles Trapezoid
Shorter side (b):
Legs (c):
Diagonal (d):
Height (h):
Central median (m):
Circumcircle radius (rc):
Overlap (g):
Perimeter (p):
Area (A):
Acute angle (α):
Obtuse angle (β):
Round to    decimal places.



Formulas:
d = √ a * b + c²
h = 1/2 * √ 4c² - ( a - b )²
m = ( a + b ) / 2
rc = c * √ ( a * b + c² ) / ( 4c² - ( a - b )² )
g = ( a - b ) / 2
p = a + b + 2 * c
A = 1/4 * √ ( a + b )² * ( a - b + 2c ) * ( b - a + 2c ) = m * h
α = arccos( ( g² + c² - h² ) / ( 2 * g * c ) )
β = 180° - α

Side lengths, diagonal, height, radius and perimeter have the same unit (e.g. meter), the area has this unit squared (e.g. square meter).


Anzeige

The perpendicular bisectors intersect at the circumcircle center. The perpendicular bisector of the two parallel sides is the symmetry axis of the isosceles trapezoid.The isosceles trapezoid is therefore axially symmetric, but neither point-symmetric nor rotationally symmetric.

perpendicular bisectors and circumcircle
perpendicular bisectors and circumcircle

An isosceles trapezoid is created when you cut off the tip of an isosceles triangle. Isosceles trapezoids can be used to tile a plane without gaps by placing the trapezoids next to each other on their slanted sides in each row, each rotated by 180 degrees. If you depict a square or a rectangle in the middle of the vanishing point perspective, it appears in the shape of an isosceles trapezoid.
The two diagonals of the isosceles trapezoid have the same length. This is in contrast to the parallelogram, which is created when both sides have equal angles rather than mirrored ones. The parallelogram can be viewed as an isosceles obtuse trapezoid.
A special case of the isosceles trapezoid is the tri-equilateral trapezoid, in which the long or short of the two parallel sides has the length of the legs. There are therefore two different variants of this. An isosceles and simultaneously right trapezoid would of course be a rectangle.



© Jumk.de Webprojects | Online Calculators





Anzeige



Anzeige



↑ up