1D Line , Circular Arc , Parabola , Helix , Koch Curve
2D
Regular Polygons: Equilateral Triangle , Square , Pentagon , Hexagon , Heptagon , Octagon , Nonagon , Decagon , Hendecagon , Dodecagon , Hexadecagon , N-gon , Polygon Ring
Other Polygons: Triangle , Right Triangle , Isosceles Triangle , IR Triangle , 1/2 EL Triangle , Quadrilateral , Rectangle , Golden Rectangle , Rhombus , Parallelogram , Kite , 60-90-120 Kite , Half Square Kite , Right Kite , Trapezoid , Right Trapezoid , Isosceles Trapezoid , Tri-equilateral Trapezoid , Obtuse Trapezoid , Cyclic Quadrilateral , Tangential Quadrilateral , Arrowhead , Concave Quadrilateral , Crossed Rectangle , Antiparallelogram , House-Shape , Symmetric Pentagon , Diagonally Bisected Octagon , Cut Rectangle , Concave Pentagon , Concave Regular Pentagon , Stretched Pentagon , Straight Bisected Octagon , Stretched Hexagon , Symmetric Hexagon , Semi-regular Hexagon , Parallelogon , Concave Hexagon , Arrow-Hexagon , Rectangular Hexagon , L-Shape , Sharp Kink , T-Shape , Square Heptagon , Truncated Square , Stretched Octagon , Frame , Open Frame , Grid , Cross , X-Shape , H-Shape , Threestar , Fourstar , Pentagram , Hexagram , Unicursal Hexagram , Oktagram , Star of Lakshmi , Double Star Polygon , Polygram , The Hat , Polygon
Round Forms: Circle , Semicircle , Circular Sector , Circular Segment , Circular Layer , Circular Central Segment , Round Corner , Circular Corner , Circle Tangent Arrow , Drop Shape , Crescent , Pointed Oval , Two Circles , Lancet Arch , Knoll , Annulus , Semi-Annulus , Annulus Sector , Annulus Segment , Cash , Curved Rectangle , Rounded Polygon , Rounded Rectangle , Ellipse , Semi-Ellipse , Elliptical Segment , Elliptical Sector , Elliptical Ring , Stadium , Spiral , Log. Spiral , Reuleaux Triangle , Cycloid , Double Cycloid , Astroid , Hypocycloid , Cardioid , Epicycloid , Parabolic Segment , Heart , Tricorn , Pointed Semicircle , Interarc Triangle , Circular Arc Triangle , Interarc Quadrangle , Intercircle Quadrangle , Circular Arc Quadrangle , Circular Arc Polygon , Claw , Half Yin-Yang , Arbelos , Salinon , Bulge , Lune , Three Circles , Polycircle , Round-Edged Polygon , Rose , Gear , Oval , Egg-Profile , Lemniscate , Squircle , Circular Square , Digon , Spherical Triangle
3D
Platonic Solids: Tetrahedron , Cube , Octahedron , Dodecahedron , Icosahedron
Archimedean Solids: Truncated Tetrahedron , Cuboctahedron , Truncated Cube , Truncated Octahedron , Rhombicuboctahedron , Truncated Cuboctahedron , Icosidodecahedron , Truncated Dodecahedron , Truncated Icosahedron , Snub Cube , Rhombicosidodecahedron , Truncated Icosidodecahedron , Snub Dodecahedron
Catalan Solids: Triakis Tetrahedron , Rhombic Dodecahedron , Triakis Octahedron , Tetrakis Hexahedron , Deltoidal Icositetrahedron , Hexakis Octahedron , Rhombic Triacontahedron , Triakis Icosahedron , Pentakis Dodecahedron , Pentagonal Icositetrahedron , Deltoidal Hexecontahedron , Hexakis Icosahedron , Pentagonal Hexecontahedron
Johnson Solids: Pyramids , Cupolae , Rotunda , Elongated Pyramids , Gyroelongated Pyramids , Bipyramids , Elongated Bipyramids , Gyroelongated Square Dipyramid , Gyrobifastigium , Disheptahedron , Snub Disphenoid , Sphenocorona , Disphenocingulum
Other Polyhedrons: Cuboid , Square Pillar , Triangular Pyramid , Square Pyramid , Regular Pyramid , Pyramid , Square Frustum , Regular Frustum , Frustum , Bent Pyramid , Regular Bipyramid , Bipyramid , Bifrustum , Frustum-Pyramid , Ramp , Right Wedge , Wedge , Half Tetrahedron , Rhombohedron , Parallelepiped , Regular Prism , Prism , Oblique Prism , Anticube , Antiprism , Prismatoid , Trapezohedron , Disphenoid , Corner , General Tetrahedron , Wedge-Cuboid , Half Cuboid , Skewed Cuboid , Ingot , Skewed Three-Edged Prism , Cut Cuboid , Truncated Cuboid , Obtuse Edged Cuboid , Elongated Dodecahedron , Truncated Rhombohedron , Obelisk , Bent Cuboid , Hollow Cuboid , Hollow Pyramid , Hollow Frustum , Star Pyramid , Stellated Octahedron , Small Stellated Dodecahedron , Great Stellated Dodecahedron , Great Dodecahedron , Great Icosahedron
Round Forms: Sphere , Hemisphere , Spherical Corner , Cylinder , Cut Cylinder , Oblique Cylinder , Bent Cylinder , Elliptic Cylinder , Generalized Cylinder , Cone , Truncated Cone , Oblique Circular Cone , Elliptic Cone , Truncated Elliptic Cone , General Cone , General Truncated Cone , Bicone , Truncated Bicone , Pointed Pillar , Rounded Cone , Drop , Spheroid , Ellipsoid , Semi-Ellipsoid , Spherical Sector , Spherical Cap , Spherical Segment , Spherical Central Segment , Double Calotte , Double Sphere , Spherical Wedge , Half Cylinder , Diagonally Halved Cylinder , Cylindrical Wedge , Cylindrical Sector , Cylindrical Segment , Flat End Cylinder , Half Cone , Conical Sector , Conical Wedge , Spherical Shell , Half Spherical Shell , Spherical Shell Cap , Cylindrical Shell , Cut Cylindrical Shell , Oblique Cylindrical Shell , Hollow Cone , Truncated Hollow Cone , Spherical Ring , Torus , Spindle Torus , Toroid , Torus Sector , Toroid Sector , Arch , Reuleaux-Tetrahedron , Capsule , Capsule Segment , Double Point , Anticone , Truncated Anticone , Sphere-Cylinder , Lens , Concave Lens , Barrel , Egg Shape , Paraboloid , Hyperboloid , Oloid , Steinmetz Solids , Solid of Revolution
4D
Tesseract , Hypersphere
Anzeige

Parallelepiped Calculator
Calculations at a parallelepiped. A parallelepiped is a six-sided polyhedron with equal opposite sides and edges, the side faces are parallelograms .
Enter the three edge lengths and the three angles at one of the vertices and choose the number of decimal places. Then click Calculate. Please enter angles in degrees, here you can convert angle units .
α is the angle at bc, β is the angle at ac and γ is the angle at ab.

Formulas:
A = 2 * ( a*b*sin(γ) + a*c*sin(β) + b*c*sin(α) )
V = abc * √ 1 + 2*cos(α)*cos(β)*cos(γ) - cos²(α) - cos²(β) - cos²(γ)

The edge lengths have the same unit (e.g. meter), the area has this unit squared (e.g. square meter), the volume has this unit to the power of three (e.g. cubic meter). A/V has this unit ^{-1} .

A parallelepiped is the three-dimensional equivalent of a parallelogram. Its side faces are three pairs of two equal parallelograms facing each other. A parallelepiped is an oblique prism with a parallelogram as its base. If all sides are the same length, i.e. if they are rhombuses , then it is a special case of the parallelepiped, the rhombohedron . The cuboid with different long sides but equal angles, which then have ninety degrees, is also a special case of the parallelepiped. The even more special case of the cube combines both special cases, i.e. equal sides and equal angles.
The parallelepiped is point-symmetrical with respect to the intersection point of its spatial diagonals. The general parallelepiped has no axial symmetry, but the special cases do. With equal parallelepipeds, space can be filled without gaps.

©

Jumk.de Webprojects |

Online Calculators
Anzeige