1D Line , Circular Arc , Parabola , Helix , Koch Curve
2D
Regular Polygons: Equilateral Triangle , Square , Pentagon , Hexagon , Heptagon , Octagon , Nonagon , Decagon , Hendecagon , Dodecagon , Hexadecagon , N-gon , Polygon Ring
Other Polygons: Triangle , Right Triangle , Isosceles Triangle , IR Triangle , 1/2 EL Triangle , Golden Triangle , Quadrilateral , Rectangle , Golden Rectangle , Rhombus , Parallelogram , Kite , 60-90-120 Kite , Half Square Kite , Right Kite , Trapezoid , Right Trapezoid , Isosceles Trapezoid , Tri-equilateral Trapezoid , Obtuse Trapezoid , Cyclic Quadrilateral , Tangential Quadrilateral , Arrowhead , Concave Quadrilateral , Crossed Rectangle , Antiparallelogram , House-Shape , Symmetric Pentagon , Diagonally Bisected Octagon , Cut Rectangle , Concave Pentagon , Concave Regular Pentagon , Stretched Pentagon , Straight Bisected Octagon , Stretched Hexagon , Symmetric Hexagon , Semi-regular Hexagon , Parallelogon , Concave Hexagon , Arrow-Hexagon , Rectangular Hexagon , L-Shape , Sharp Kink , T-Shape , Square Heptagon , Truncated Square , Stretched Octagon , Frame , Open Frame , Grid , Cross , X-Shape , H-Shape , Threestar , Fourstar , Pentagram , Hexagram , Unicursal Hexagram , Oktagram , Star of Lakshmi , Double Star Polygon , Polygram , The Hat , Polygon
Round Forms: Circle , Semicircle , Circular Sector , Circular Segment , Circular Layer , Circular Central Segment , Round Corner , Circular Corner , Circle Tangent Arrow , Drop Shape , Crescent , Pointed Oval , Two Circles , Lancet Arch , Knoll , Elongated Semicircle , Annulus , Semi-Annulus , Annulus Sector , Annulus Segment , Cash , Curved Rectangle , Rounded Polygon , Rounded Rectangle , Ellipse , Semi-Ellipse , Elliptical Segment , Elliptical Sector , Elliptical Ring , Stadium , Half Stadium , Stadium Segment , Spiral , Log. Spiral , Reuleaux Triangle , Cycloid , Double Cycloid , Astroid , Hypocycloid , Cardioid , Epicycloid , Parabolic Segment , Heart , Tricorn , Pointed Semicircle , Interarc Triangle , Circular Arc Triangle , Interarc Quadrangle , Intercircle Quadrangle , Circular Arc Quadrangle , Circular Arc Polygon , Claw , Half Yin-Yang , Arbelos , Salinon , Bulge , Lune , Three Circles , Polycircle , Round-Edged Polygon , Rose , Gear , Oval , Egg-Profile , Lemniscate , Squircle , Circular Square , Digon , Spherical Triangle
3D
Platonic Solids: Tetrahedron , Cube , Octahedron , Dodecahedron , Icosahedron
Archimedean Solids: Truncated Tetrahedron , Cuboctahedron , Truncated Cube , Truncated Octahedron , Rhombicuboctahedron , Truncated Cuboctahedron , Icosidodecahedron , Truncated Dodecahedron , Truncated Icosahedron , Snub Cube , Rhombicosidodecahedron , Truncated Icosidodecahedron , Snub Dodecahedron
Catalan Solids: Triakis Tetrahedron , Rhombic Dodecahedron , Triakis Octahedron , Tetrakis Hexahedron , Deltoidal Icositetrahedron , Hexakis Octahedron , Rhombic Triacontahedron , Triakis Icosahedron , Pentakis Dodecahedron , Pentagonal Icositetrahedron , Deltoidal Hexecontahedron , Hexakis Icosahedron , Pentagonal Hexecontahedron
Johnson Solids: Pyramids , Cupolae , Rotunda , Elongated Pyramids , Gyroelongated Pyramids , Bipyramids , Elongated Bipyramids , Gyroelongated Square Dipyramid , Gyrobifastigium , Disheptahedron , Snub Disphenoid , Sphenocorona , Disphenocingulum
Other Polyhedrons: Cuboid , Square Pillar , Triangular Pyramid , Square Pyramid , Regular Pyramid , Pyramid , Square Frustum , Regular Frustum , Frustum , Bent Pyramid , Regular Bipyramid , Bipyramid , Bifrustum , Frustum-Pyramid , Ramp , Right Wedge , Wedge , Half Tetrahedron , Rhombohedron , Parallelepiped , Regular Prism , Prism , Oblique Prism , Anticube , Antiprism , Prismatoid , Trapezohedron , Disphenoid , Corner , General Tetrahedron , Wedge-Cuboid , Half Cuboid , Skewed Cuboid , Ingot , Skewed Three-Edged Prism , Cut Cuboid , Truncated Cuboid , Obtuse Edged Cuboid , Elongated Dodecahedron , Truncated Rhombohedron , Obelisk , Bent Cuboid , Hollow Cuboid , Hollow Pyramid , Hollow Frustum , Star Pyramid , Stellated Octahedron , Small Stellated Dodecahedron , Great Stellated Dodecahedron , Great Dodecahedron , Great Icosahedron
Round Forms: Sphere , Hemisphere , Quarter Sphere , Spherical Corner , Cylinder , Cut Cylinder , Oblique Cylinder , Bent Cylinder , Elliptic Cylinder , Generalized Cylinder , Cone , Truncated Cone , Oblique Circular Cone , Elliptic Cone , Truncated Elliptic Cone , General Cone , General Truncated Cone , Bicone , Truncated Bicone , Pointed Pillar , Rounded Cone , Elongated Hemisphere , Drop , Spheroid , Ellipsoid , Semi-Ellipsoid , Spherical Sector , Spherical Cap , Spherical Segment , Spherical Central Segment , Double Calotte , Rounded Disc , Double Sphere , Spherical Wedge , Half Cylinder , Diagonally Halved Cylinder , Cylindrical Wedge , Cylindrical Sector , Cylindrical Segment , Flat End Cylinder , Half Cone , Conical Sector , Conical Wedge , Spherical Shell , Half Spherical Shell , Spherical Shell Cap , Cylindrical Shell , Cut Cylindrical Shell , Oblique Cylindrical Shell , Hollow Cone , Truncated Hollow Cone , Spherical Ring , Torus , Spindle Torus , Toroid , Torus Sector , Toroid Sector , Arch , Reuleaux-Tetrahedron , Capsule , Half Capsule , Capsule Segment , Double Point , Anticone , Truncated Anticone , Sphere-Cylinder , Lens , Concave Lens , Barrel , Egg Shape , Paraboloid , Hyperboloid , Oloid , Steinmetz Solids , Solid of Revolution
4D
Tesseract , Hypersphere
Anzeige
Rose Calculator
Calculations at a rose or rosette. A rose is a curve, which in polar coordinates is formed by the equation r = a * cos( n * φ ) . a is the radius of the circle surrounding the curve, which is also the length of one petal. For even n, the number of petals is twice n, for odd n it is equal. The more petals the rose has, the thinner is each single petal. Enter the radius and the parameter n. Choose the number of decimal places, then click Calculate.
The radius has a one-dimensional unit (e.g. meter), the areas have this unit squared (e.g. square meter). Parameter and unit are a dimensionless.
Roses are also defined for non-natural numbers, but then other shapes result which intersect themselves at points other than just the center. These can also include asymmetrical shapes. For rational numbers, the curves are closed, for irrational numbers they are open. Roses based on natural numbers are point-symmetrical to their origin and axially symmetrical to any straight line through the end of one of the petals and the center. Even-numbered roses have as additional axes of symmetry those straight lines that run exactly between two petals. The number of axes of symmetry is therefore n for odd-numbered roses, 2n for even-numbered roses, just like the number of petals. Even-numbered roses are rotationally symmetrical at an angle of 180 degrees divided by n, odd-numbered at an angle of 360 degrees divided by n.
A Foucault pendulum describes a rose curve. Roses are found as graphic decorative elements, although the rose as an ornament has a slightly different and more general meaning. Its name is derived from the flower rose, whose blossom is reminiscent of these shapes.
©
Jumk.de Webprojects |
Online Calculators
Anzeige