1D Line
2D
Regular Polygons: Equilateral Triangle , Square , Pentagon , Hexagon , Heptagon , Octagon , Nonagon , Decagon , Hendecagon , Dodecagon , Hexadecagon , N-gon , Polygon Ring
Other Polygons: Triangle , Right Triangle , Isosceles Triangle , IR Triangle , Quadrilateral , Rectangle , Rhombus , Parallelogram , Half Square Kite , Right Kite , Kite , Right Trapezoid , Isosceles Trapezoid , Tri-equilateral Trapezoid , Trapezoid , Cyclic Quadrilateral , Tangential Quadrilateral , Arrowhead , Concave Quadrilateral , Antiparallelogram , House-Shape , Symmetric Pentagon , Concave Pentagon , Concave Regular Pentagon , Parallelogon , Stretched Hexagon , Arrow-Hexagon , L-Shape , Sharp Kink , Truncated Square , Frame , Threestar , Fourstar , Pentagram , Hexagram , Unicursal Hexagram , Cross , Oktagram , Star of Lakshmi , Polygram , Polygon
Round Forms: Circle , Semicircle , Circular Sector , Circular Segment , Circular Layer , Round Corner , Circular Corner , Circle Tangent Arrow , Drop Shape , Crescent , Pointed Oval , Lancet Arch , Knoll , Annulus , Annulus Sector , Curved Rectangle , Rounded Polygon , Rounded Rectangle , Ellipse , Semi-Ellipse , Elliptical Segment , Elliptical Sector , Elliptical Ring , Stadium , Spiral , Log. Spiral , Reuleaux Triangle , Cycloid , Astroid , Hypocycloid , Cardioid , Epicycloid , Parabolic Segment , Tricorn , Interarc Triangle , Circular Arc Triangle , Circular Arc Quadrangle , Arbelos , Salinon , Lune , Three Circles , Polycircle , Round-Edged Polygon , Rose , Gear , Oval , Egg-Profile , Lemniscate , Squircle , Digon , Spherical Triangle
3D
Platonic Solids: Tetrahedron , Cube , Octahedron , Dodecahedron , Icosahedron
Archimedean Solids: Truncated Tetrahedron , Cuboctahedron , Truncated Cube , Truncated Octahedron , Rhombicuboctahedron , Truncated Cuboctahedron , Icosidodecahedron , Truncated Dodecahedron , Truncated Icosahedron , Snub Cube , Rhombicosidodecahedron , Truncated Icosidodecahedron , Snub Dodecahedron
Catalan Solids: Triakis Tetrahedron , Rhombic Dodecahedron , Triakis Octahedron , Tetrakis Hexahedron , Deltoidal Icositetrahedron , Hexakis Octahedron , Rhombic Triacontahedron , Triakis Icosahedron , Pentakis Dodecahedron , Pentagonal Icositetrahedron , Deltoidal Hexecontahedron , Hexakis Icosahedron , Pentagonal Hexecontahedron
Johnson Solids: Pyramids , Cupolae , Rotunda , Elongated Pyramids , Gyroelongated Pyramids , Bipyramids , Elongated Bipyramids , Disheptahedron , Snub Disphenoid , Sphenocorona , Disphenocingulum
Other Polyhedrons: Cuboid , Square Pillar , Triangular Pyramid , Square Pyramid , Regular Pyramid , Pyramid , Regular Frustum , Frustum , Bipyramid , Bifrustum , Ramp , Right Wedge , Wedge , Half Tetrahedron , Rhombohedron , Parallelepiped , Prism , Oblique Prism , Antiprism , Prismatoid , Trapezohedron , Disphenoid , Corner , General Tetrahedron , Wedge-Cuboid , Half Cuboid , Skewed Cuboid , Skewed Three-Edged Prism , Obtuse Edged Cuboid , Obelisk , Elongated Dodecahedron , Truncated Rhombohedron , Hollow Cuboid , Hollow Pyramid , Hollow Frustum , Star Pyramid , Stellated Octahedron , Small Stellated Dodecahedron , Great Stellated Dodecahedron , Great Dodecahedron , Great Icosahedron
Round Forms: Sphere , Hemisphere , Spherical Corner , Cylinder , Cut Cylinder , Oblique Cylinder , Generalized Cylinder , Cone , Truncated Cone , Oblique Circular Cone , Elliptic Cone , Bicone , Truncated Bicone , Rounded Cone , Drop , Spheroid , Ellipsoid , Semi-Ellipsoid , Spherical Sector , Spherical Cap , Spherical Segment , Spherical Wedge , Cylindrical Wedge , Cylindrical Sector , Cylindrical Segment , Flat End Cylinder , Conical Sector , Conical Wedge , Spherical Shell , Cylindrical Shell , Oblique Cylindrical Shell , Hollow Cone , Truncated Hollow Cone , Spherical Ring , Torus , Spindle Torus , Toroid , Torus Sector , Toroid Sector , Arch , Reuleaux-Tetrahedron , Capsule , Lens , Barrel , Egg Shape , Paraboloid , Hyperboloid , Oloid , Steinmetz Solids , Solid of Revolution
4D
Tesseract , Hypersphere
Anzeige

Rose Calculator
Calculations at a rose. A rose is a curve, which in polar coordinates is formed by the equation r = a * cos( n * φ ) . a is the radius of the circle surrounding the curve, which is also the length of one petal. For even n, the number of petals is twice n, for odd n it is equal. The more petals the rose has, the thinner is each single petal. Enter the radius and n or m. Choose the number of decimal places, then click Calculate.

The radius has a one-dimensional unit (e.g. meter), the areas have this unit squared (e.g. square meter). Parameter and unit are a dimensionless.

Anzeige

Share:

©

Jumk.de Webprojects
Anzeige