1D Line
2D
Regular Polygons: Equilateral Triangle , Square , Pentagon , Hexagon , Heptagon , Octagon , Nonagon , Decagon , Hendecagon , Dodecagon , Hexadecagon , N-gon , Polygon Ring
Other Polygons: Triangle , Right Triangle , Isosceles Triangle , IR Triangle , Quadrilateral , Rectangle , Rhombus , Parallelogram , Half Square Kite , Right Kite , Kite , Right Trapezoid , Isosceles Trapezoid , Trapezoid , Cyclic Quadrilateral , Tangential Quadrilateral , Arrowhead , Concave Quadrilateral , Antiparallelogram , House-Shape , Symmetric Pentagon , Concave Pentagon , Parallelogon , Arrow-Hexagon , L-Shape , Sharp Kink , Truncated Square , Frame , Threestar , Fourstar , Pentagram , Hexagram , Unicursal Hexagram , Cross , Oktagram , Star of Lakshmi , Polygon
Round Forms: Circle , Semicircle , Circular Sector , Circular Segment , Circular Layer , Round Corner , Circular Corner , Crescent , Pointed Oval , Annulus , Annulus Sector , Curved Rectangle , Rounded Rectangle , Ellipse , Semi-Ellipse , Elliptical Segment , Elliptical Sector , Stadium , Digon , Spherical Triangle , Spiral , Log. Spiral , Reuleaux Triangle , Cycloid , Astroid , Hypocycloid , Cardioid , Epicycloid , Parabolic Segment , Arbelos , Salinon , Lune , Three Circles , Polycircle , Oval , Lemniscate , Squircle
3D
Platonic Solids: Tetrahedron , Cube , Octahedron , Dodecahedron , Icosahedron
Archimedean Solids: Truncated Tetrahedron , Cuboctahedron , Truncated Cube , Truncated Octahedron , Rhombicuboctahedron , Truncated Cuboctahedron , Icosidodecahedron , Truncated Dodecahedron , Truncated Icosahedron , Snub Cube , Rhombicosidodecahedron , Truncated Icosidodecahedron , Snub Dodecahedron
Catalan Solids: Triakis Tetrahedron , Rhombic Dodecahedron , Triakis Octahedron , Tetrakis Hexahedron , Deltoidal Icositetrahedron , Hexakis Octahedron , Rhombic Triacontahedron , Triakis Icosahedron , Pentakis Dodecahedron , Pentagonal Icositetrahedron , Deltoidal Hexecontahedron , Hexakis Icosahedron , Pentagonal Hexecontahedron
Johnson Solids: Pyramids , Cupolae , Rotunda , Elongated Pyramids , Disheptahedron , Snub Disphenoid , Sphenocorona
Other Polyhedrons: Cuboid , Square Pillar , Triangular Pyramid , Square Pyramid , Regular Pyramid , Pyramid , Regular Frustum , Frustum , Bipyramid , Bifrustum , Ramp , Right Wedge , Wedge , Rhombohedron , Parallelepiped , Prism , Oblique Prism , Antiprism , Prismatoid , Trapezohedron , Disphenoid , Corner , General Tetrahedron , Wedge-Cuboid , Half Cuboid , Skewed Cuboid , Skewed Three-Edged Prism , Truncated Rhombohedron , Hollow Cuboid , Hollow Pyramid , Hollow Frustum , Stellated Octahedron , Small Stellated Dodecahedron , Great Stellated Dodecahedron
Round Forms: Sphere , Hemisphere , Cylinder , Cut Cylinder , Oblique Cylinder , Generalized Cylinder , Cone , Truncated Cone , Oblique Circular Cone , Elliptic Cone , Bicone , Spheroid , Ellipsoid , Semi-Ellipsoid , Spherical Sector , Spherical Cap , Spherical Segment , Spherical Wedge , Cylindrical Wedge , Cylindrical Sector , Cylindrical Segment , Flat End Cylinder , Conical Sector , Conical Wedge , Spherical Shell , Cylindrical Shell , Hollow Cone , Truncated Hollow Cone , Spherical Ring , Torus , Spindle Torus , Toroid , Torus Sector , Arch , Reuleaux-Tetrahedron , Capsule , Lens , Barrel , Egg Shape , Paraboloid , Hyperboloid , Oloid , Steinmetz Solids
4D
Tesseract , Hypersphere
Anzeige

Parallelogram Calculator
Calculations in a parallelogram. A parallelogram or rhomboid is a quadrilateral with parallel opposite sides of the same length and opposite angles of the same size. Enter the two side lengths and one angle and choose the number of decimal places. Then click Calculate. Please enter angles in degrees, here you can convert angle units .

Formulas:
β = 180° - α
e = √ a² + b² - 2 * a * b * cos ( β )
f = √ a² + b² - 2 * a * b * cos ( α )
p = 2 * ( a + b )
A = a * b * sin ( α ) = a * h_{a} = b * h_{b}
h_{a} = b * sin ( α )
h_{b} = a * sin ( α )

Side lengths, diagonal, perimeter and heights have the same unit (e.g. meter), the area has this unit squared (e.g. square meter).

Anzeige

The centroid is at the intersection of the diagonals. To this, the parallelogram is point symmetric and rotationally symmetric at a rotation of 180° or multiples of this. By cutting off one corner and adding this piece on the other side, the parallelogram can be turned into a rectangle .

perimeter p, area A sides and angles

diagonals heights

turning the parallelogram into a rectangle

Anzeige

Share:

©

Jumk.de Webprojects
Anzeige