Anzeige

Tangens und Kotangens

Der Tangens ist das Verhältnis aus Sinus und Kosinus, der Kotangens ist das Verhältnis aus Kosinus und Sinus. Im Einheitskreis sind sie darstellbar durch die Länge der Senkrechte vom Schnittpunkt der jeweiligen Achse mit dem Kreis auf die Verlängerung der Hypotenuse. Tangens und Kotangens können alle reellen Werte annehmen, sie haben eine Periode von π. Der Kotangens ist der Kehrwert vom Tangens und andersherum (Kotangens = 1/Tangens, Tangens = 1/Kotangens).


Hier ist ein kleiner Rechner, um Tangens und Kotangens auszurechnen. Einen Wert eingeben, die anderen werden berechnet.

° = π =

Tangens: Kotangens:

Runden auf    Nachkommastellen.


Tangens

Tangens = Sinus / Kosinus

tan(α) = sin(α) / cos(α)

Tangens

Der Tangens ist eine in jedem zwischen den Polstellen liegendem Intervall streng monoton steigende Funktion. Die Polstellen befinden sich bei (n+1/2)*π, seine Nullstellen sind bei n*π, für n∈ℤ.

Der Graph der Tangensfunktion
Der Graph der Tangensfunktion.



Anzeige

Kotangens

Kotangens = Kosinus / Sinus

cot(α) = cos(α) / sin(α)

Kotangens

Der Kotangens ist eine in jedem zwischen den Polstellen liegendem Intervall streng monoton fallende Funktion. Die Polstellen befinden sich bei n*π, seine Nullstellen sind bei (n+1/2)*π, für n∈ℤ.

Der Graph der Kotangensfunktion
Der Graph der Kotangensfunktion.

Tangensfunktion und Kotangensfunktion im Vergleich
Tangensfunktion und Kotangensfunktion im Vergleich, auch für negative Werte.


Anwendung

Beispiele für die Anwendung des Tangens sind Steigung bzw. Gefälle, die Abmessungen eines Vielecks und die scheinbare Größe von Objekten. Ein Beispiel für die Anwendung des Kotangens ist die Oberfläche eines Antiprismas.


Weiter

Die Kehrwerte von Kosinus und Sinus bezeichnet man als Sekans und Kosekans.



Anzeige


Die Graphen wurden mit dem Zeichenprogramm für Funktionsgraphen erstellt.

Alle Angaben ohne Gewähr | © jumk.de Webprojekte | Rechneronline