Wahrscheinlichkeit | Ereignis | Benford-Verteilung | Satz von Bayes
Wahrscheinlichkeit beim Ziehen und Würfeln berechnen
Ein einfaches Werkzeug zur Berechnung von Wahrscheinlichkeiten beim Ziehen oder Würfeln (= Ziehen mit Zurücklegen). Die Gesamtmenge ist die Anzahl der Möglichkeiten von Beginn an (z.B. 32 bei einem Kartenspiel oder 6 beim normalen Würfel). Die Menge der Gesuchten entspricht den gewünschten Möglichkeiten (z.B. 4 Asse im Kartenspiel, oder 2, wenn man eine 5 oder 6 würfeln möchte). Die Wahrscheinlichkeit für das einmalige Eintreten wird unter p ausgegeben, jene für das wiederholte Eintreten mit Πp. Bei Πp wird errechnet, wie hoch die Wahrscheinlichkeit ist, dass das gewünschte Ereignis bei jedem Zug eintritt.
: Ein Topf enthält 25 Kugeln, davon 15 rote. Die Wahrscheinlichkeit, 5 rote Kugeln hintereinander zu ziehen ist 5,65%.
: Die Wahrscheinlichkeit viermal hintereinander die gleiche Zahl zu würfeln ist 0,46%. Beim ersten Durchgang ist das Ergebnis egal, daher werden nur 3 Durchgänge gezählt.
Alle Angaben ohne Gewähr | © Jumk.de Webprojekte | Rechneronline.de | Impressum & Datenschutz | Siehe auch Kombinatorik-Funktionen